Reduced sediments: A factor in the design of subsurface oxidant delivery systems

被引:8
作者
Korom, SF
McFarland, MJ
Sims, RC
机构
[1] Department of Geology, University of North Dakota, Grand Forks
[2] Utah Water Research Laboratory, Utah State University, Logan
[3] Mobay Chemical Co., South Carolina, Research Triangle Institute
关键词
D O I
10.1111/j.1745-6592.1996.tb00576.x
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
A preliminary field performance evaluation of in situ bioremediation of a contaminated aquifer at the Libby, Montana, Superfund site, a former wood preserving site, was conducted for the Bioremediation Field Initiative sponsored by the U.S. Environmental Protection Agency (U.S. EPA). The current approach for site remediation involves injecting oxygen and nutrients into the aquifer to stimulate microbial degradation of target compounds that include polycyclic aromatic hydrocarbons and pentachlorophenol. The preliminary field evaluation determined that, in addition to the oxygen demand associated with the microbial oxidation of the organic contamination, uncontaminated aquifer sediments at the site are naturally reduced and also exert a significant oxygen demand. This conclusion is supported by three types of information: (1) analyses of ground water samples: (2) results from a field-scale tracer test; and (3) results of laboratory evaluations of oxygen use by reduced aquifer sediment samples. An estimate of the cost of supplying hydrogen peroxide to satisfy the oxygen demand of the uncontaminated reduced sediments is provided to demonstrate that the additional cost of oxidizing the reduced sediments could be significant. The presence of naturally occurring reduced sediments at a contamination site should be considered in the design of subsurface oxidant delivery systems.
引用
收藏
页码:100 / 105
页数:6
相关论文
共 19 条
[1]  
[Anonymous], 1992, STANDARD METHODS EXA
[2]  
[Anonymous], 1976, STANDARD METHODS EXA
[3]   MODERN MARINE-SEDIMENTS AS A NATURAL ANALOG TO THE CHEMICALLY STRESSED ENVIRONMENT OF A LANDFILL [J].
BAEDECKER, MJ ;
BACK, W .
JOURNAL OF HYDROLOGY, 1979, 43 (1-4) :393-414
[4]   OXIDATION REDUCTION CAPACITIES OF AQUIFER SOLIDS [J].
BARCELONA, MJ ;
HOLM, TR .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1991, 25 (09) :1565-1572
[5]   GEOCHEMICAL INDICATORS OF INTRINSIC BIOREMEDIATION [J].
BORDEN, RC ;
GOMEZ, CA ;
BECKER, MT .
GROUND WATER, 1995, 33 (02) :180-189
[6]   OXIDATION-REDUCTION SEQUENCES IN GROUND-WATER FLOW SYSTEMS [J].
CHAMP, DR ;
GULENS, J ;
JACKSON, RE .
CANADIAN JOURNAL OF EARTH SCIENCES, 1979, 16 (01) :12-23
[7]  
HULING SG, 1990, EPA600290006
[8]  
JORGENSEN BB, 1989, AUTOTROPHIC BACTERIA, P117
[9]   NATURAL DENITRIFICATION IN THE SATURATED ZONE - A REVIEW [J].
KOROM, SF .
WATER RESOURCES RESEARCH, 1992, 28 (06) :1657-1668
[10]   RAPID ASSAY FOR MICROBIALLY REDUCIBLE FERRIC IRON IN AQUATIC SEDIMENTS [J].
LOVLEY, DR ;
PHILLIPS, EJP .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1987, 53 (07) :1536-1540