High classification accuracy for schizophrenia with rest and task fMRI data\

被引:81
作者
Du, Wei [1 ]
Calhoun, Vince D. [2 ,3 ]
Li, Hualiang [1 ]
Ma, Sai [1 ]
Eichele, Tom [4 ]
Kiehl, Kent A. [2 ]
Pearlson, Godfrey D. [5 ,6 ]
Adali, Tuelay [1 ]
机构
[1] Univ Maryland Baltimore Cty, Dept CSEE, Baltimore, MD 21228 USA
[2] Univ New Mexico, Mind Res Network, Albuquerque, NM 87131 USA
[3] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA
[4] Univ Bergen, Dept Biol & Med Psychol, Bergen, Norway
[5] Yale Univ, Sch Med, Dept Psychiat, New Haven, CT USA
[6] Yale Univ, Sch Med, Dept Neurobiol, New Haven, CT USA
来源
FRONTIERS IN HUMAN NEUROSCIENCE | 2012年 / 6卷
基金
美国国家科学基金会;
关键词
classification; fMRI; independent component analysis; KPCA; FLD; COMPONENT ANALYSIS; BLIND SEPARATION; FUNCTIONAL MRI; ICA; CONNECTIVITY; INFORMATION; PERFORMANCE; ALGORITHMS; NETWORKS; SYSTEMS;
D O I
10.3389/fnhum.2012.00145
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We present a novel method to extract classification features from functional magnetic resonance imaging (fMRI) data collected at rest or during the performance of a task. By combining a two-level feature identification scheme with kernal principal component analysis (KPCA) and Fisher's linear discriminant analysis (FLD), we achieve high classification rates in discriminating healthy controls from patients with schizophrenia. Experimental results using leave-one-out cross-validation show that features extracted from the default mode network (DMN) lead to a classification accuracy of over 90% in both data sets. Moreover, using a majority vote method that uses multiple features, we achieve a classification accuracy of 98% in auditory oddball (AOD) task and 93% in rest data. Several components, including DMN, temporal, and medial visual regions, are consistently present in the set of features that yield high classification accuracy. The features we have extracted thus show promise to be used as biomarkers for schizophrenia. Results also suggest that there may be different advantages to using resting fMRI data or task fMRI data.
引用
收藏
页数:12
相关论文
共 45 条
[1]   Capturing inter-subject variability with group independent component analysis of fMRI data: A simulation study [J].
Allen, Elena A. ;
Erhardt, Erik B. ;
Wei, Yonghua ;
Eichele, Tom ;
Calhoun, Vince D. .
NEUROIMAGE, 2012, 59 (04) :4141-4159
[2]  
[Anonymous], 2011, Statistical Parametric Mapping: The Analysis of Functional Brain Images
[3]  
[Anonymous], NEUAL NEWORKS PATTER
[4]   Automatic Bayesian Classification of Healthy Controls, Bipolar Disorder, and Schizophrenia Using Intrinsic Connectivity Maps From fMRI Data [J].
Arribas, Juan I. ;
Calhoun, Vince D. ;
Adali, Tulay .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2010, 57 (12) :2850-2860
[5]   Generalized discriminant analysis using a kernel approach [J].
Baudat, G ;
Anouar, FE .
NEURAL COMPUTATION, 2000, 12 (10) :2385-2404
[6]   AN INFORMATION MAXIMIZATION APPROACH TO BLIND SEPARATION AND BLIND DECONVOLUTION [J].
BELL, AJ ;
SEJNOWSKI, TJ .
NEURAL COMPUTATION, 1995, 7 (06) :1129-1159
[7]  
Calhoun VD, 2006, IEEE ENG MED BIOL, V25, P79, DOI 10.1109/MEMB.2006.1607672
[8]   A method for making group inferences from functional MRI data using independent component analysis [J].
Calhoun, VD ;
Adali, T ;
Pearlson, GD ;
Pekar, JJ .
HUMAN BRAIN MAPPING, 2001, 14 (03) :140-151
[9]   Temporal Lobe and "Default" Hemodynamic Brain Modes Discriminate Between Schizophrenia and Bipolar Disorder [J].
Calhoun, Vince D. ;
Maciejewski, Paul K. ;
Pearlson, Godfrey D. ;
Kiehl, Kent A. .
HUMAN BRAIN MAPPING, 2008, 29 (11) :1265-1275
[10]   Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks [J].
Calhoun, Vince D. ;
Kiehl, Kent A. ;
Pearlson, Godfrey D. .
HUMAN BRAIN MAPPING, 2008, 29 (07) :828-838