Discovering Novel Causal Patterns From Biomedical Natural-Language Texts Using Bayesian Nets

被引:13
作者
Atkinson, John [1 ]
Rivas, Alejandro [1 ]
机构
[1] Univ Concepcion, Dept Comp Sci, Concepcion 3349001, Chile
来源
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE | 2008年 / 12卷 / 06期
关键词
Bayesian nets; biomedicine; information extraction; knowledge discovery; text mining;
D O I
10.1109/TITB.2008.920793
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Most of the biomedicine text mining approaches do not deal with specific cause-effect patterns that may explain the discoveries. In order to fill this gap, this paper proposes an effective new model for text mining from biomedicine literature that helps to discover cause-effect hypotheses related to diseases, drugs, etc. The supervised approach combines Bayesian inference methods with natural-language processing techniques in order to generate simple and interesting patterns. The results of applying the model to biomedicine text databases and its comparison with other state-of-the-art methods are also discussed.
引用
收藏
页码:714 / 722
页数:9
相关论文
共 27 条
[1]  
Ananiadou S., 2006, Text Mining for Biology and Biomedicine
[2]  
Citeseer: State College
[3]   CGMIM: Automated text-mining of Online Mendelian Inheritance in Man (OMIM) to identify genetically-associated cancers and candidate genes [J].
Bajdik, CD ;
Kuo, B ;
Rusaw, S ;
Jones, S ;
Brooks-Wilson, A .
BMC BIOINFORMATICS, 2005, 6 (1)
[4]  
Berry MW., 2004, Survey of Text Mining. Clustering, Classification
[5]  
BLAKE C, P 2001 IEEE INT C DA, P59
[6]  
DING J, 2002, MINING MEDLINE ABSTR
[7]   PreBIND and Textomy - mining the biomedical literature for protein-protein interactions using a support vector machine [J].
Donaldson, I ;
Martin, J ;
de Bruijn, B ;
Wolting, C ;
Lay, V ;
Tuekam, B ;
Zhang, SD ;
Baskin, B ;
Bader, GD ;
Michalickova, K ;
Pawson, T ;
Hogue, CWV .
BMC BIOINFORMATICS, 2003, 4 (1)
[8]  
EOM J, 2004, P 11 INT C ART INT M, P216
[9]  
Finn R, 1998, SCIENTIST, V12, P12
[10]  
GIRJU R, P ACL 2003 WORKSH MU, P76