Leaf photosynthesis and carbohydrate dynamics of soybeans grown throughout their life-cycle under Free-Air Carbon dioxide Enrichment

被引:169
作者
Rogers, A
Allen, DJ
Davey, PA
Morgan, PB
Ainsworth, EA
Bernacchi, CJ
Cornic, G
Dermody, O
Dohleman, FG
Heaton, EA
Mahoney, J
Zhu, XG
Delucia, EH
Ort, DR
Long, SP [1 ]
机构
[1] Univ Illinois, Dept Crop Sci, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Plant Biol, Urbana, IL 61801 USA
[3] Univ Illinois, Photosynth Res Unit, USDA, ARS, Urbana, IL 61801 USA
[4] Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA
[5] Univ Paris 11, Lab Ecophysiol Vegetale, F-91405 Orsay, France
关键词
Glycine max; atmospheric change; chlorophyll fluorescence; electron transport; elevated carbon dioxide concentration; FACE; global climate change; photosynthesis; stomatal conductance;
D O I
10.1111/j.1365-3040.2004.01163.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
A lower than theoretically expected increase in leaf photosynthesis with long-term elevation of carbon dioxide concentration ([CO2]) is often attributed to limitations in the capacity of the plant to utilize the additional photosynthate, possibly resulting from restrictions in rooting volume, nitrogen supply or genetic constraints. Field-grown, nitrogen-fixing soybean with indeterminate flowering might therefore be expected to escape these limitations. Soybean was grown from emergence to grain maturity in ambient air (372 mumol mol(-1)[CO2]) and in air enriched with CO2 (552 mumol mol(-1)[CO2]) using Free-Air CO2 Enrichment (FACE) technology. The diurnal courses of leaf CO2 uptake (A) and stomatal conductance (g(s)) for upper canopy leaves were followed throughout development from the appearance of the first true leaf to the completion of seed filling. Across the growing season the daily integrals of leaf photosynthetic CO2 uptake (A') increased by 24.6% in elevated [CO2] and the average mid-day g(s) decreased by 21.9%. The increase in A' was about half the 44.5% theoretical maximum increase calculated from Rubisco kinetics. There was no evidence that the stimulation of A was affected by time of day, as expected if elevated [CO2] led to a large accumulation of leaf carbohydrates towards the end of the photoperiod. In general, the proportion of assimilated carbon that accumulated in the leaf as non-structural carbohydrate over the photoperiod was small (< 10%) and independent of [CO2] treatment. By contrast to A', daily integrals of PSII electron transport measured by modulated chlorophyll fluorescence were not significantly increased by elevated [CO2]. This indicates that A at elevated [CO2] in these field conditions was predominantly ribulose-1,5-bisphosphate (RubP) limited rather than Rubisco limited. There was no evidence of any loss of stimulation toward the end of the growing season; the largest stimulation of A' occurred during late seed filling. The stimulation of photosynthesis was, however, transiently lost for a brief period just before seed fill. At this point, daytime accumulation of foliar carbohydrates was maximal, and the hexose:sucrose ratio in plants grown at elevated [CO2] was significantly larger than that in plants grown at current [CO2]. The results show that even for a crop lacking the constraints that have been considered to limit the responses of C-3 plants to rising [CO2] in the long term, the actual increase in A over the growing season is considerably less than the increase predicted from theory.
引用
收藏
页码:449 / 458
页数:10
相关论文
共 36 条
[1]   Is stimulation of leaf photosynthesis by elevated carbon dioxide concentration maintained in the long term?: A test with Lolium perenne grown for 10 years at two nitrogen fertilization levels under Free Air CO2 Enrichment (FACE) [J].
Ainsworth, EA ;
Davey, PA ;
Hymus, GJ ;
Osborne, CP ;
Rogers, A ;
Blum, H ;
Nösberger, J ;
Long, SP .
PLANT CELL AND ENVIRONMENT, 2003, 26 (05) :705-714
[2]   A meta-analysis of elevated [CO2] effects on soybean (Glycine max) physiology, growth and yield [J].
Ainsworth, EA ;
Davey, PA ;
Bernacchi, CJ ;
Dermody, OC ;
Heaton, EA ;
Moore, DJ ;
Morgan, PB ;
Naidu, SL ;
Ra, HSY ;
Zhu, XG ;
Curtis, PS ;
Long, SP .
GLOBAL CHANGE BIOLOGY, 2002, 8 (08) :695-709
[3]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[4]   In vivo temperature response functions of parameters required to model RuBP-limited photosynthesis [J].
Bernacchi, CJ ;
Pimentel, C ;
Long, SP .
PLANT CELL AND ENVIRONMENT, 2003, 26 (09) :1419-1430
[5]   Improved temperature response functions for models of Rubisco-limited photosynthesis [J].
Bernacchi, CJ ;
Singsaas, EL ;
Pimentel, C ;
Portis, AR ;
Long, SP .
PLANT CELL AND ENVIRONMENT, 2001, 24 (02) :253-259
[6]   More efficient plants: A consequence of rising atmospheric CO2? [J].
Drake, BG ;
GonzalezMeler, MA ;
Long, SP .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1997, 48 :609-639
[7]   COLORIMETRIC METHOD FOR DETERMINATION OF SUGARS AND RELATED SUBSTANCES [J].
DUBOIS, M ;
GILLES, KA ;
HAMILTON, JK ;
REBERS, PA ;
SMITH, F .
ANALYTICAL CHEMISTRY, 1956, 28 (03) :350-356
[8]   A BIOCHEMICAL-MODEL OF PHOTOSYNTHETIC CO2 ASSIMILATION IN LEAVES OF C-3 SPECIES [J].
FARQUHAR, GD ;
CAEMMERER, SV ;
BERRY, JA .
PLANTA, 1980, 149 (01) :78-90
[9]  
Farrar J. F., 1993, P232
[10]   Photosynthesis and conductance of spring-wheat leaves:: field response to continuous free-air atmospheric CO2 enrichment [J].
Garcia, RL ;
Long, SP ;
Wall, GW ;
Osborne, CP ;
Kimball, BA ;
Nie, GY ;
Pinter, PJ ;
Lamorte, RL ;
Wechsung, F .
PLANT CELL AND ENVIRONMENT, 1998, 21 (07) :659-669