Remodeling of Ca2+-handling by atrial tachycardia:: evidence for a role in loss of rate-adaptation

被引:38
作者
Kneller, J
Sun, H
Leblanc, N
Nattel, S
机构
[1] McGill Univ, Dept Med & Physiol, Res Ctr, Montreal Heart Inst, Montreal, PQ H1T 1C8, Canada
[2] McGill Univ, Dept Pharmacol, Montreal, PQ H1T 1C8, Canada
基金
加拿大健康研究院;
关键词
arrhythima (mechanisms); calcium (cellular); remodeling; SR (function); supraventr; arrhythmia;
D O I
10.1016/S0008-6363(02)00274-2
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Loss of rate-dependent action potential (AP) duration (APD) adaptation is a characteristic feature of atrial tachycardia-induced remodeling (ATR). ATR causes sarcolemmal ion-channel remodeling (ICR) and changes in Ca2+-handling. The present studies were designed to quantify Ca2+-handling changes and then to apply a mathematical AP model to assess the contributions of Ca2+-handling abnormalities and ICR to loss of APD rate-adaptation. Methods: Indo-1 fluorescence was used to measure intracellular Ca-2-transients and whole-cell patch-clamp to record APs in atrial myocytes from control dogs and dogs subjected to atrial pacing at 400/min for 6 weeks. A previously developed ionic model of the canine atrial AP was modified to reproduce measured Ca2+-transients of control and ATR myocytes. Results: In control, APD to 95% repolarization (APD(95)) decreased by 91 ms experimentally and by 88 ms in the model over the 1-6 Hz range. In ATR myocytes, APD(95) failed to decrease over the 1-6 Hz range. Ca2+-handling abnormalities in ATR myocytes included slowed upstroke, decreased amplitude and strong single-beat post-rest potentiation. Unaltered Ca2+-handling properties included caffeine-releasable Ca2+-stores and Ca2+-transient relaxation before and after exposure to the sarcoplasmic reticulum Ca2+-ATPase (SERCA) inhibitor cyclopiazonic acid (CPA). Including ICR alone in the model accounted for loss of APD(50) rate-adaptation: however, KR alone reduced APD(95) rate-adaptation by only 19% to 71 ms. When both ICR and Ca2+-handling changes were incorporated, APD(95) rate-adaptation decreased to 6 ms, accounting for experimental observations. Conclusion: ICR alone does not fully account for loss of APD rate-adaptation with atrial remodeling: Ca2+-handling changes appear to contribute to this clinically significant phenomenon. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:416 / 426
页数:11
相关论文
共 54 条
[1]   FAILURE IN THE RATE ADAPTATION OF THE ATRIAL REFRACTORY PERIOD - ITS RELATIONSHIP TO VULNERABILITY [J].
ATTUEL, P ;
CHILDERS, R ;
CAUCHEMEZ, B ;
POVEDA, J ;
MUGICA, J ;
COUMEL, P .
INTERNATIONAL JOURNAL OF CARDIOLOGY, 1982, 2 (02) :179-197
[2]   Structural changes of atrial myocardium due to sustained atrial fibrillation in the goat [J].
Ausma, J ;
Wijffels, M ;
Thone, F ;
Wouters, L ;
Allessie, M ;
Borgers, M .
CIRCULATION, 1997, 96 (09) :3157-3163
[3]   CALIBRATION OF INDO-1 AND RESTING INTRACELLULAR [CA](I) IN INTACT RABBIT CARDIAC MYOCYTES [J].
BASSANI, JWM ;
BASSANI, RA ;
BERS, DM .
BIOPHYSICAL JOURNAL, 1995, 68 (04) :1453-1460
[4]   INTRACELLULAR CA-2+ TRANSIENTS DURING RAPID COOLING CONTRACTURES IN GUINEA-PIG VENTRICULAR MYOCYTES [J].
BERS, DM ;
BRIDGE, JHB ;
SPITZER, KW .
JOURNAL OF PHYSIOLOGY-LONDON, 1989, 417 :537-553
[5]   INTRACELLULAR CALCIUM HANDLING IN ISOLATED VENTRICULAR MYOCYTES FROM PATIENTS WITH TERMINAL HEART-FAILURE [J].
BEUCKELMANN, DJ ;
NABAUER, M ;
ERDMANN, E .
CIRCULATION, 1992, 85 (03) :1046-1055
[6]   ALTERATIONS OF K+ CURRENTS IN ISOLATED HUMAN VENTRICULAR MYOCYTES FROM PATIENTS WITH TERMINAL HEART-FAILURE [J].
BEUCKELMANN, DJ ;
NABAUER, M ;
ERDMANN, E .
CIRCULATION RESEARCH, 1993, 73 (02) :379-385
[7]   Ionic mechanisms of electrical remodeling in human atrial fibrillation [J].
Bosch, RF ;
Zeng, XR ;
Grammer, JB ;
Popovic, K ;
Mewis, C ;
Kühlkamp, V .
CARDIOVASCULAR RESEARCH, 1999, 44 (01) :121-131
[8]   INHOMOGENEITY OF CELLULAR REFRACTORINESS IN HUMAN ATRIUM - FACTOR OF ARRHYTHMIA [J].
BOUTJDIR, M ;
LEHEUZEY, JY ;
LAVERGNE, T ;
CHAUVAUD, S ;
GUIZE, L ;
CARPENTIER, A ;
PERONNEAU, P .
PACE-PACING AND CLINICAL ELECTROPHYSIOLOGY, 1986, 9 (06) :1095-1100
[9]   DIFFERENCES IN CARDIAC CALCIUM RELEASE CHANNEL (RYANODINE RECEPTOR) EXPRESSION IN MYOCARDIUM FROM PATIENTS WITH END-STAGE HEART-FAILURE CAUSED BY ISCHEMIC VERSUS DILATED CARDIOMYOPATHY [J].
BRILLANTES, AM ;
ALLEN, P ;
TAKAHASHI, T ;
IZUMO, S ;
MARKS, AR .
CIRCULATION RESEARCH, 1992, 71 (01) :18-26
[10]   Gene expression of proteins influencing the calcium homeostasis in patients with persistent and paroxysmal atrial fibrillation [J].
Brundel, BJJM ;
Van Gelder, IC ;
Henning, RH ;
Tuinenburg, AE ;
Deelman, LE ;
Tieleman, RG ;
Crandjean, JG ;
Van GIlst, WH ;
Crijns, HJGM .
CARDIOVASCULAR RESEARCH, 1999, 42 (02) :443-454