Identification of a twin-arginine translocation system in Pseudomonas syringae pv. tomato DC3000 and its contribution to pathogenicity and fitness

被引:63
作者
Bronstein, PA
Marrichi, M
Cartinhour, S
Schneider, DJ
DeLisa, MP [1 ]
机构
[1] Cornell Univ, Sch Chem & Biomol Engn, Ithaca, NY 14853 USA
[2] USDA ARS, US Plant Soil & Nutr Lab, Ithaca, NY 14853 USA
关键词
D O I
10.1128/JB.187.24.8450-8461.2005
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The bacterial plant pathogen Pseudomonas syringae pv. tomato DC3000 (DC3000) causes disease in Arabidopsis thaliana and tomato plants, and it elicits the hypersensitive response in nonhost plants such as Nicotiana tabacum and Nicotiana benthamiana. While these events chiefly depend upon the type III protein secretion system and the effector proteins that this system translocates into plant cells, additional factors have been shown to contribute to DC3000 virulence and still many others are likely to exist. Therefore, we explored the contribution of the twin-arginine translocation (Tat) system to the physiology of DC3000. We found that a tatC mutant strain of DC3000 displayed a number of phenotypes, including loss of motility on soft agar plates, deficiency in siderophore synthesis and iron acquisition, sensitivity to copper, loss of extracellular phospholipase activity, and attenuated virulence in host plant leaves. In the latter case, we provide evidence that decreased virulence of tatC mutants likely arises from a synergistic combination of (i) compromised fitness of bacteria in planta; (ii) decreased efficiency of type III translocation; and (III) cytoplasmically retained virulence factors. Finally, we demonstrate a novel broad-host-range genetic reporter based on the green fluorescent protein for the identification of Tat-targeted secreted virulence factors that should be generally applicable to any gram-negative bacterium. Collectively, our evidence supports the notion that virulence of DC3000 is a multifactorial process and that the Tat system is an important virulence determinant of this phytopathogenic bacterium.
引用
收藏
页码:8450 / 8461
页数:12
相关论文
共 68 条
[1]   Type III secretion system effector proteins: Double agents in bacterial disease and plant defense [J].
Alfano, JR ;
Collmer, A .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 2004, 42 :385-414
[2]  
Alfano JR, 1996, PLANT CELL, V8, P1683, DOI 10.1105/tpc.8.10.1683
[3]  
Andersen JB, 1998, APPL ENVIRON MICROB, V64, P2240
[4]   The Tat protein export pathway [J].
Berks, BC ;
Sargent, F ;
Palmer, T .
MOLECULAR MICROBIOLOGY, 2000, 35 (02) :260-274
[5]   The Tat protein translocation pathway and its role in microbial physiology [J].
Berks, BC ;
Palmer, T ;
Sargent, F .
ADVANCES IN MICROBIAL PHYSIOLOGY, VOL 47, 2003, 47 :187-254
[6]   The Escherichia coli amidase AmiC is a periplasmic septal ring component exported via the twin-arginine transport pathway [J].
Bernhardt, TG ;
de Boer, PAJ .
MOLECULAR MICROBIOLOGY, 2003, 48 (05) :1171-1182
[7]   Pathway specificity for a Delta pH-dependent precursor thylakoid lumen protein is governed by a 'Sec-avoidance' motif in the transfer peptide and a 'Sec-incompatible' mature protein [J].
Bogsch, E ;
Brink, S ;
Robinson, C .
EMBO JOURNAL, 1997, 16 (13) :3851-3859
[8]   An essential component of a novel bacterial protein export system with homologues in plastids and mitochondria [J].
Bogsch, EG ;
Sargent, F ;
Stanley, NR ;
Berks, BC ;
Robinson, C ;
Palmer, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (29) :18003-18006
[9]   The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000 [J].
Buell, CR ;
Joardar, V ;
Lindeberg, M ;
Selengut, J ;
Paulsen, IT ;
Gwinn, ML ;
Dodson, RJ ;
Deboy, RT ;
Durkin, AS ;
Kolonay, JF ;
Madupu, R ;
Daugherty, S ;
Brinkac, L ;
Beanan, MJ ;
Haft, DH ;
Nelson, WC ;
Davidsen, T ;
Zafar, N ;
Zhou, LW ;
Liu, J ;
Yuan, QP ;
Khouri, H ;
Fedorova, N ;
Tran, B ;
Russell, D ;
Berry, K ;
Utterback, T ;
Van Aken, SE ;
Feldblyum, TV ;
D'Ascenzo, M ;
Deng, WL ;
Ramos, AR ;
Alfano, JR ;
Cartinhour, S ;
Chatterjee, AK ;
Delaney, TP ;
Lazarowitz, SG ;
Martin, GB ;
Schneider, DJ ;
Tang, XY ;
Bender, CL ;
White, O ;
Fraser, CM ;
Collmer, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (18) :10181-10186
[10]  
CASADABAN MJ, 1979, P NATL ACAD SCI USA, V76, P4530, DOI 10.1073/pnas.76.9.4530