Non-mean-field behavior of the contact process on scale-free networks

被引:109
作者
Castellano, C
Pastor-Satorras, R
机构
[1] Univ Roma La Sapienza, CNR, INFM, SMC,Dipartimento Fis, I-00185 Rome, Italy
[2] CNR, Ist Sistemi Complessi, Rome, Italy
[3] Univ Politecn Cataluna, Dept Fis & Engn Nucl, ES-08034 Barcelona, Spain
关键词
D O I
10.1103/PhysRevLett.96.038701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an analysis of the classical contact process on scale-free networks. A mean-field study, both for finite and infinite network sizes, yields an absorbing-state phase transition at a finite critical value of the control parameter, characterized by a set of exponents depending on the network structure. Since finite size effects are large and the infinite network limit cannot be reached in practice, a numerical study of the transition requires the application of finite size scaling theory. Contrary to other critical phenomena studied previously, the contact process in scale-free networks exhibits a nontrivial critical behavior that cannot be quantitatively accounted for by mean-field theory.
引用
收藏
页数:4
相关论文
共 22 条
[1]  
ABRAMOWITZ M, 1972, HDB MATH FUNCTIOSN
[2]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[3]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[4]   Cut-offs and finite size effects in scale-free networks [J].
Boguña, M ;
Pastor-Satorras, R ;
Vespignani, A .
EUROPEAN PHYSICAL JOURNAL B, 2004, 38 (02) :205-209
[5]  
Boguñá M, 2003, LECT NOTES PHYS, V625, P127
[6]   Network robustness and fragility: Percolation on random graphs [J].
Callaway, DS ;
Newman, MEJ ;
Strogatz, SH ;
Watts, DJ .
PHYSICAL REVIEW LETTERS, 2000, 85 (25) :5468-5471
[7]   Small-world effects in the majority-vote model [J].
Campos, PRA ;
de Oliveira, VM ;
Moreira, FGB .
PHYSICAL REVIEW E, 2003, 67 (02) :4
[8]  
CATANZARO, 2005, PHYS REV E, V71
[9]   Generation of uncorrelated random scale-free networks -: art. no. 027103 [J].
Catanzaro, M ;
Boguñá, M ;
Pastor-Satorras, R .
PHYSICAL REVIEW E, 2005, 71 (02)
[10]   Resilience of the Internet to random breakdowns [J].
Cohen, R ;
Erez, K ;
ben-Avraham, D ;
Havlin, S .
PHYSICAL REVIEW LETTERS, 2000, 85 (21) :4626-4628