Breaking generalized Diffie-Hellman modulo a composite is no easier than factoring

被引:29
作者
Biham, E
Boneh, D
Reingold, O [1 ]
机构
[1] Weizmann Inst Sci, Dept Comp Sci & Appl Math, IL-76100 Rehovot, Israel
[2] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[3] Technion Israel Inst Technol, Dept Comp Sci, IL-32000 Haifa, Israel
基金
以色列科学基金会;
关键词
cryptography; Diffie-Hellman assumption; factoring; key-exchange; pseudo-random function;
D O I
10.1016/S0020-0190(99)00047-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Diffie-Hellman key-exchange protocol may naturally be extended to k > 2 parties. This gives rise to the generalized Diffie-Hellman assumption (GDH-Assumption). Naor and Reingold have recently shown an efficient construction of pseudo- random functions and proved its security based on the GDH-Assumption. In this note, we prove that breaking this assumption module a so called Blum-integer would imply an efficient algorithm for factorization. Therefore, both the key-exchange protocol and the pseudo-random functions are secure as long as factoring Blum-integers is hard. Our reduction strengthen a previous "worst-case" reduction of Shmuely (1985). (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:83 / 87
页数:5
相关论文
共 8 条
[1]  
BONEH D, 1996, LECT NOTES COMPUTER, V1109, P129, DOI DOI 10.1007/3-540-68697-5
[2]   NEW DIRECTIONS IN CRYPTOGRAPHY [J].
DIFFIE, W ;
HELLMAN, ME .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1976, 22 (06) :644-654
[3]  
McCurley K. S., 1988, Journal of Cryptology, V1, P95, DOI 10.1007/BF02351718
[4]  
NAOR M, 1997, P 38 IEEE S FDN COMP
[5]  
Rabin M. O., 1979, TR212 MIT LAB COMP S
[6]  
SHMUELY Z, 1985, 356 COMP SCI DEP TEC
[7]  
Shoup Victor, 1997, EUROCRYPT 1997, V1233, P256, DOI DOI 10.1007/3-540-69053-018
[8]  
STEINER M, 1996, P 3 ACM C COMP COMM, P31