Engineering of functional, perfusable 3D microvascular networks on a chip

被引:665
作者
Kim, Sudong [1 ]
Lee, Hyunjae [2 ]
Chung, Minhwan [1 ]
Jeon, Noo Li [1 ,2 ,3 ]
机构
[1] Seoul Natl Univ, Sch Mech & Aerosp Engn, Seoul 151744, South Korea
[2] Seoul Natl Univ, Sch Mech & Aerosp Engn, Div WCU Multiscale Mech Design, Seoul 151744, South Korea
[3] Seoul Natl Univ, Inst Adv Machinery & Design, Seoul 151744, South Korea
基金
新加坡国家研究基金会;
关键词
EXTRACELLULAR-MATRIX; ENDOTHELIAL-CELLS; NITRIC-OXIDE; ANGIOGENESIS; MECHANISMS; CANCER; MECHANOTRANSDUCTION; PERMEABILITY; MICROVESSELS; FIBROBLASTS;
D O I
10.1039/c3lc41320a
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Generating perfusable 3D microvessels in vitro is an important goal for tissue engineering, as well as for reliable modelling of blood vessel function. To date, in vitro blood vessel models have not been able to accurately reproduce the dynamics and responses of endothelial cells to grow perfusable and functional 3D vascular networks. Here we describe a microfluidic-based platform whereby we model natural cellular programs found during normal development and angiogenesis to form perfusable networks of intact 3D microvessels as well as tumor vasculatures based on the spatially controlled co-culture of endothelial cells with stromal fibroblasts, pericytes or cancer cells. The microvessels possess the characteristic morphological and biochemical markers of in vivo blood vessels, and exhibit strong barrier function and long-term stability. An open, unobstructed microvasculature allows the delivery of nutrients, chemical compounds, biomolecules and cell suspensions, as well as flow-induced mechanical stimuli into the luminal space of the endothelium, and exhibits faithful responses to physiological shear stress as demonstrated by cytoskeleton rearrangement and increased nitric oxide synthesis. This simple and versatile platform provides a wide range of applications in vascular physiology studies as well as in developing vascularized organ-on-a-chip and human disease models for pharmaceutical screening.
引用
收藏
页码:1489 / 1500
页数:12
相关论文
共 51 条
[1]   Astrocyte-endothelial interactions at the blood-brain barrier [J].
Abbott, NJ ;
Rönnbäck, L ;
Hansson, E .
NATURE REVIEWS NEUROSCIENCE, 2006, 7 (01) :41-53
[2]  
Alajati A, 2008, NAT METHODS, V5, P439, DOI [10.1038/nmeth.1198, 10.1038/NMETH.1198]
[3]   Endothelial/pericyte interactions [J].
Armulik, A ;
Abramsson, A ;
Betsholtz, C .
CIRCULATION RESEARCH, 2005, 97 (06) :512-523
[4]  
CARLOS TM, 1994, BLOOD, V84, P2068
[5]   A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them [J].
Carman, CV ;
Springer, TA .
JOURNAL OF CELL BIOLOGY, 2004, 167 (02) :377-388
[6]   Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases [J].
Carmeliet, Peter ;
Jain, Rakesh K. .
NATURE REVIEWS DRUG DISCOVERY, 2011, 10 (06) :417-427
[7]   Recreating the Perivascular Niche Ex Vivo Using a Microfluidic Approach [J].
Carrion, Bita ;
Huang, Carlos P. ;
Ghajar, Cyrus M. ;
Kachgal, Suraj ;
Kniazeva, Ekaterina ;
Jeon, Noo Li ;
Putnam, Andrew J. .
BIOTECHNOLOGY AND BIOENGINEERING, 2010, 107 (06) :1020-1028
[8]   Engineering of In Vitro 3D Capillary Beds by Self-Directed Angiogenic Sprouting [J].
Chan, Juliana M. ;
Zervantonakis, Ioannis K. ;
Rimchala, Tharathorn ;
Polacheck, William J. ;
Whisler, Jordan ;
Kamm, Roger D. .
PLOS ONE, 2012, 7 (12)
[9]   Prevascularization of a Fibrin-Based Tissue Construct Accelerates the Formation of Functional Anastomosis with Host Vasculature [J].
Chen, Xiaofang ;
Aledia, Anna S. ;
Ghajar, Cyrus M. ;
Griffith, Craig K. ;
Putnam, Andrew J. ;
Hughes, Christopher C. W. ;
George, Steven C. .
TISSUE ENGINEERING PART A, 2009, 15 (06) :1363-1371
[10]   Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell [J].
Chien, Shu .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2007, 292 (03) :H1209-H1224