The topology of fluid flow past a sequence of cylinders

被引:17
作者
Kennedy, J
Sanjuan, MAF
Yorke, JA
Grebogi, C
机构
[1] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
[2] Univ Rey Juan Carlos, Escuela Super Ciencias Expt Tecnolog, Madrid 28936, Spain
[3] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
关键词
indecomposable continua; horseshoes; fluid flow; noisy dynamical system; Lagrangian dynamics; area-preserving;
D O I
10.1016/S0166-8641(98)00032-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper analyzes conditions under which dynamical systems in the plane have indecomposable continue or even infinite nested families of indecomposable continua. Our hypotheses are patterned after a numerical study of a fluid flow example, but should hold in a wide variety of physical processes. The basic fluid flow model is a differential equation in R-2 which is periodic in time, and so its solutions can be represented by a time-1 map F:R-2 --> R-2. We represent a version of this system "with noise" by considering any sequence of maps Fn:R-2 --> R-2, each of which is epsilon-close to F in the C-1 norm, so that if p is a point in the fluid flow at time n, then F-n(p) is its position at time n + 1. We show that indecomposable continua still exist for small epsilon. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:207 / 242
页数:36
相关论文
共 11 条
[1]  
Alligood K.T., 1996, Chaos: An Introduction to Dynamical Systems, DOI [10.1007/0-387-22492-0_3, DOI 10.1007/0-387-22492-0_3]
[2]  
BARGE M, 1987, P AM MATH SOC, V101, P541
[3]  
BARGE M, IN PRESS PERIODIC PO
[4]  
KENNEDY J, 1995, LECT NOTES PURE APPL, V170, P103
[5]  
KURATOWSKI C, 1982, TOPOLOGY, V2
[6]  
Nusse HE, 1994, DYNAMICS NUMERICAL E
[7]   FRACTAL BOUNDARIES IN OPEN HYDRODYNAMICAL FLOWS - SIGNATURES OF CHAOTIC SADDLES [J].
PENTEK, A ;
TOROCZKAI, Z ;
TEL, T ;
GREBOGI, C ;
YORKE, JA .
PHYSICAL REVIEW E, 1995, 51 (05) :4076-4088
[8]  
Robinson C., 1995, Dynamical systems: stability, symbolic dynamics, and chaos
[9]  
SANJUAN M, 1997, PHYS REV LETT, V78, P1082
[10]   Indecomposable continua in dynamical systems with noise: Fluid flow past an array of cylinders [J].
Sanjuan, MAF ;
Kennedy, J ;
Grebogi, C ;
Yorke, JA .
CHAOS, 1997, 7 (01) :125-138