Distribution-free estimation of the random coefficient dummy endogenous variable model

被引:20
作者
Chen, SN [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Econ, Clear Water Bay, Kowloon, Peoples R China
关键词
distribution-free estimation; random-coefficient model; sample selection; exclusion restriction;
D O I
10.1016/S0304-4076(98)00075-X
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper considers the estimation of the random coefficient dummy endogenous variable model under a symmetry and index condition for the error distribution. We follow a two-step approach. The selection equation is estimated first; in the second step an instrumental variables estimator is proposed for the ourcome equation through a pairwise comparison method. Our approach can be readily extended to the general switching regression model. In constrast to the existing literature on sample selection models, the exclusion restriction is not needed here for model identification; furthermore, the intercept term for the outcome equation can be estimated at the usual parametric rate. (C) 1999 Elsevier Science S.A. All rights reserved. JEL classification: C31; C34.
引用
收藏
页码:171 / 199
页数:29
相关论文
共 31 条
[1]   SEMIPARAMETRIC ESTIMATION OF CENSORED SELECTION MODELS WITH A NONPARAMETRIC SELECTION MECHANISM [J].
AHN, H ;
POWELL, JL .
JOURNAL OF ECONOMETRICS, 1993, 58 (1-2) :3-29
[2]   Semiparametric estimation of the intercept of a sample selection model [J].
Andrews, DWK ;
Schafgans, MMA .
REVIEW OF ECONOMIC STUDIES, 1998, 65 (03) :497-517
[3]   ASYMPTOTIC NORMALITY OF SERIES ESTIMATORS FOR NONPARAMETRIC AND SEMIPARAMETRIC REGRESSION-MODELS [J].
ANDREWS, DWK .
ECONOMETRICA, 1991, 59 (02) :307-345
[4]   ASYMPTOTIC EFFICIENCY IN SEMIPARAMETRIC MODELS WITH CENSORING [J].
CHAMBERLAIN, G .
JOURNAL OF ECONOMETRICS, 1986, 32 (02) :189-218
[5]  
CHEN S, 1996, SEMIPARAMETRIC ESTIM
[6]  
CHEN S, 1997, IN PRESS ECONOMETRIC
[7]   DISTRIBUTION-FREE MAXIMUM-LIKELIHOOD ESTIMATOR OF THE BINARY CHOICE MODEL [J].
COSSLETT, SR .
ECONOMETRICA, 1983, 51 (03) :765-782
[8]  
COSSLETT SR, 1991, NONPARAMETRIC SEMIPA
[9]   SMOOTHING NOISY DATA WITH SPLINE FUNCTIONS [J].
WAHBA, G .
NUMERISCHE MATHEMATIK, 1975, 24 (05) :383-393