Tumor cell responses to a novel glutathione S-transferase-activated nitric oxide-releasing prodrug

被引:95
作者
Findlay, VJ
Townsend, DM
Saavedra, JE
Buzard, GS
Citro, ML
Keefer, LK
Ji, XH
Tew, KD
机构
[1] Fox Chase Canc Ctr, Dept Pharmacol, Philadelphia, PA 19111 USA
[2] SAIC Frederick, Basic Res Program, Frederick, MD USA
[3] NCI, Comparat Carcinogenesis Lab, Frederick, MD 21701 USA
[4] NCI, Macromol Crystallog Lab, Frederick, MD 21701 USA
关键词
D O I
10.1124/mol.65.5.1070
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
We have used structure-based design techniques to introduce the drug O-2-[2,4-dinitro-5-(N-methyl-N-4-carboxyphenylamino) phenyl] 1-N,N-dimethylamino) diazen-1-ium-1,2-diolate (PABA/NO), which is efficiently metabolized to potentially cytolytic nitric oxide by the pi isoform of glutathione S-transferase, an enzyme expressed at high levels in many tumors. We have used mouse embryo fibroblasts (MEFs) null for GSTpi (GSTpi(-/-)) to show that the absence of GST pi results in a decreased sensitivity to PABA/NO. Cytotoxicity of PABA/NO was also examined in a mouse skin fibroblast (NIH3T3) cell line that was stably transfected with GSTpi and/or various combinations of gamma-glutamyl cysteine synthetase and the ATP-binding cassette transporter MRP1. Overexpression of MRP1 conferred the most significant degree of resistance, and in vitro transport studies confirmed that a GSTpi-activated metabolite of PABA/NO was effluxed by MRP1 in a GSH-dependent manner. Additional studies showed that in the absence of MRP1, PABA/NO activated the extracellular-regulated and stress-activated protein kinases ERK, c-Jun NH2-terminal kinase (JNK), and p38. Selective inhibition studies showed that the activation of JNK and p38 were critical to the cytotoxic effects of PABA/NO. Finally, PABA/NO produced antitumor effects in a human ovarian cancer model grown in SCID mice.
引用
收藏
页码:1070 / 1079
页数:10
相关论文
共 44 条
[1]   Regulation of JNK signaling by GSTp [J].
Adler, V ;
Yin, ZM ;
Fuchs, SY ;
Benezra, M ;
Rosario, L ;
Tew, KD ;
Pincus, MR ;
Sardana, M ;
Henderson, CJ ;
Wolf, CR ;
Davis, RJ ;
Ronai, Z .
EMBO JOURNAL, 1999, 18 (05) :1321-1334
[2]   Structure, catalytic mechanism, and evolution of the glutathione transferases [J].
Armstrong, RN .
CHEMICAL RESEARCH IN TOXICOLOGY, 1997, 10 (01) :2-18
[3]   SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase [J].
Bennett, BL ;
Sasaki, DT ;
Murray, BW ;
O'Leary, EC ;
Sakata, ST ;
Xu, WM ;
Leisten, JC ;
Motiwala, A ;
Pierce, S ;
Satoh, Y ;
Bhagwat, SS ;
Manning, AM ;
Anderson, DW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (24) :13681-13686
[4]   ERKS - A FAMILY OF PROTEIN-SERINE THREONINE KINASES THAT ARE ACTIVATED AND TYROSINE PHOSPHORYLATED IN RESPONSE TO INSULIN AND NGF [J].
BOULTON, TG ;
NYE, SH ;
ROBBINS, DJ ;
IP, NY ;
RADZIEJEWSKA, E ;
MORGENBESSER, SD ;
DEPINHO, RA ;
PANAYOTATOS, N ;
COBB, MH ;
YANCOPOULOS, GD .
CELL, 1991, 65 (04) :663-675
[5]  
Brunger AT, 1998, ACTA CRYSTALLOGR D, V54, P905, DOI 10.1107/s0907444998003254
[6]   Catalytic activation of the phosphatase MKP-3 by ERK2 mitogen-activated protein kinase [J].
Camps, M ;
Nichols, A ;
Gillieron, C ;
Antonsson, B ;
Muda, M ;
Chabert, C ;
Boschert, U ;
Arkinstall, S .
SCIENCE, 1998, 280 (5367) :1262-1265
[7]  
Chang ShuTing, 1999, International Journal of Medicinal Mushrooms, V1, P1
[8]   OVEREXPRESSION OF A TRANSPORTER GENE IN A MULTIDRUG-RESISTANT HUMAN LUNG-CANCER CELL-LINE [J].
COLE, SPC ;
BHARDWAJ, G ;
GERLACH, JH ;
MACKIE, JE ;
GRANT, CE ;
ALMQUIST, KC ;
STEWART, AJ ;
KURZ, EU ;
DUNCAN, AMV ;
DEELEY, RG .
SCIENCE, 1992, 258 (5088) :1650-1654
[9]  
CORNWELL MM, 1986, J BIOL CHEM, V261, P7921
[10]   Identification of a novel inhibitor of mitogen-activated protein kinase kinase [J].
Favata, MF ;
Horiuchi, KY ;
Manos, EJ ;
Daulerio, AJ ;
Stradley, DA ;
Feeser, WS ;
Van Dyk, DE ;
Pitts, WJ ;
Earl, RA ;
Hobbs, F ;
Copeland, RA ;
Magolda, RL ;
Scherle, PA ;
Trzaskos, JM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (29) :18623-18632