Fabrication of all solid-state lithium-ion batteries with three-dimensionally ordered composite electrode consisting of Li0.35La0.55TiO3 and LiMn2O4

被引:70
作者
Hara, Masanori [1 ]
Nakano, Hiroyuki [1 ,2 ]
Dokko, Kaoru [3 ]
Okuda, Sayaka [1 ]
Kaeriyama, Atsushi [1 ]
Kanamura, Kiyoshi [1 ,2 ]
机构
[1] Tokyo Metropolitan Univ, Dept Appl Chem, Tokyo 1920397, Japan
[2] Japan Sci & Technol Agcy, CREST, Kawaguchi, Saitama 3320012, Japan
[3] Yokohama Natl Univ, Dept Chem & Biotechnol, Hodogaya Ku, Yokohama, Kanagawa 2408501, Japan
关键词
3-Dimensionally ordered macroporous; Li0.35La0.55TiO3; LiMn2O4; All solid state; Solid electrolyte; MICROPHASE SEPARATION STRUCTURE; POLYMER ELECTROLYTE; TITANIUM PHOSPHATE; CONDUCTIVITY; INTERFACE;
D O I
10.1016/j.jpowsour.2008.12.048
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A composite electrode between three-dimensionally ordered macroporous (3DOM) Li0.35La0.55TiO3 (LLT) and LiMn2O4 was fabricated by colloidal crystal templating method and sol-gel process. A close-packed PS beads with the opal structure was prepared by filtration of a suspension containing PS beads. Li-La-Ti-O sol was injected by Vacuum impregnation process into the voids between PS beads, and then was heated to form 3DOM-LLT. Three-dimensionally ordered composite material consisting of LiMn2O4 and LLT was prepared by sol-gel process. The prepared composite was characterized with SEM and XRD. All solid-state Li-ion battery was fabricated with the LLT-LiMn2O4 composite electrode as a cathode, dry polymer electrolyte and Li metal anode. The prepared all solid-state cathode exhibited a volumetric discharge capacity of 220 mAh cm(-3). (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:485 / 489
页数:5
相关论文
共 21 条
[1]   Lithium ion transfer at the interface between lithium-ion-conductive solid crystalline electrolyte and polymer electrolyte [J].
Abe, T ;
Ohtsuka, M ;
Sagane, F ;
Iriyama, Y ;
Ogumi, Z .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (11) :A1950-A1953
[2]   IONIC-CONDUCTIVITY OF THE LITHIUM TITANIUM PHOSPHATE (LI1+XALXTI2-X(PO4)3), (LI1+XSCXTI2-X(PO4)3), (LI1+XYXTI2-X(PO4)3), (LI1+XLAXTI2-X(PO4)3 SYSTEMS [J].
AONO, H ;
SUGIMOTO, E ;
SADAOKA, Y ;
IMANAKA, N ;
ADACHI, GY .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1989, 136 (02) :590-591
[3]   IONIC-CONDUCTIVITY OF SOLID ELECTROLYTES BASED ON LITHIUM TITANIUM PHOSPHATE [J].
AONO, H ;
SUGIMOTO, E ;
SADAOKA, Y ;
IMANAKA, N ;
ADACHI, G .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1990, 137 (04) :1023-1027
[4]   Comparative study of lithium ion conductors in the system Li1-xAlxA2-xIV (PO4)3 with AIV = Ti or Ge and 0≤x≤0.7 for use as Li+ sensitive membranes [J].
Cretin, M ;
Fabry, P .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 1999, 19 (16) :2931-2940
[5]   A high-rate, long-life, lithium nanocomposite polymer electrolyte battery [J].
Croce, F ;
Fiory, FS ;
Persi, L ;
Scrosati, B .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2001, 4 (08) :A121-A123
[6]   Preparation of three dimensionally ordered macroporous Li0.35La0.55TiO3 by colloidal crystal templating process [J].
Dokko, K ;
Akutagawa, N ;
Isshiki, Y ;
Hoshina, K ;
Kanamura, K .
SOLID STATE IONICS, 2005, 176 (31-34) :2345-2348
[7]   Preparation of LiMn2O4 thin-film electrode on Li1+xAlxTi2-x(PO4)3 NASICON-type solid electrolyte [J].
Dokko, Kaoru ;
Hoshina, Keigo ;
Nakano, Hiroyuki ;
Kanamura, Kiyoshi .
JOURNAL OF POWER SOURCES, 2007, 174 (02) :1100-1103
[9]   Formation of electrode-electrolyte interface by lithium insertion to SnS-P2S5 negative electrode materials in all-solid-state cells [J].
Hayashi, Akitoshi ;
Konishi, Takanori ;
Tadanaga, Kiyoharu ;
Tatsumisago, Masahiro .
SOLID STATE IONICS, 2006, 177 (26-32) :2737-2740
[10]   Investigation on electrochemical interface between Li4Ti5O12 and Li1+xAlxTi2-x(PO4)3 NASICON-type solid electrolyte [J].
Hoshina, K ;
Dokko, K ;
Kanamura, K .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (11) :A2138-A2142