Structural Modulation in the High Capacity Battery Cathode Material LiFeBO3

被引:60
作者
Janssen, Yuri [1 ]
Middlemiss, Derek S. [2 ]
Bo, Shou-Hang [1 ]
Grey, Clare P. [1 ,2 ]
Khalifah, Peter G. [1 ,3 ]
机构
[1] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA
[2] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England
[3] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
BOND-VALENCE PARAMETERS; CRYSTAL-STRUCTURE; ELECTROCHEMICAL PROPERTIES; LITHIUM INSERTION; 1ST PRINCIPLES; MN; FE; PERFORMANCE; LIFEPO4; SYSTEM;
D O I
10.1021/ja301881c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The crystal structure of the promising Li-ion battery cathode material LiFeBO3 has been redetermined based on the results of single crystal X-ray diffraction data. A commensurate modulation that doubles the periodicity of the lattice in the a-axis direction is observed. When the structure of LiFeBO3 is refined in the 4-dimensional superspace group C2/c(alpha 0 gamma)00, with alpha = 1/2 and gamma = 0 and with lattice parameters of a = 5.1681 angstrom, b = 8.8687 angstrom, c = 10.1656 angstrom, and beta = 91.514 degrees, all of the disorder present in the prior C2/c structural model is eliminated and a long-range ordering of 1D chains of corner-shared LiO4 is revealed to occur as a result of cooperative displacements of Li and O atoms in the c-axis direction. Solid-state hybrid density functional theory calculations find that the modulation stabilizes the LiFeBO3 structure by 1.2 kJ/mol (12 meV/f.u.), and that the modulation disappears after delithiation to form a structurally related FeBO3 phase. The band gaps of LiFeBO3 and FeBO3 are calculated to be 3.5 and 3.3 eV, respectively. Bond valence sum maps have been used to identify and characterize the important Li conduction pathways, and suggest that the activation energies for Li diffusion will be higher in the modulated structure of LiFeBO3 than in its unmodulated analogue.
引用
收藏
页码:12516 / 12527
页数:12
相关论文
共 38 条
[1]   Relationship between bond valence and bond softness of alkali halides and chalcogenides [J].
Adams, S .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS, 2001, 57 (57) :278-287
[2]   High power lithium ion battery materials by computational design [J].
Adams, Stefan ;
Rao, R. Prasada .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2011, 208 (08) :1746-1753
[3]   Lithium ion pathways in LiFePO4 and related olivines [J].
Adams, Stefan .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2010, 14 (10) :1787-1792
[4]   A novel approach to employ Li2MnSiO4 as anode active material for lithium batteries [J].
Aravindan, V. ;
Karthikeyan, K. ;
Amaresh, S. ;
Kim, H. S. ;
Chang, D. R. ;
Lee, Y. S. .
IONICS, 2011, 17 (01) :3-6
[5]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[6]   On-demand design of polyoxianionic cathode materials based on electronegativity correlations:: An exploration of the Li2MSiO4 system (M = Fe, Mn, Co, Ni) [J].
Arroyo-de Dompablo, M. E. ;
Armand, M. ;
Tarascon, J. M. ;
Amador, U. .
ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (08) :1292-1298
[7]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[8]   Degradation and (de)lithiation processes in the high capacity battery material LiFeBO [J].
Bo, Shou-Hang ;
Wang, Feng ;
Janssen, Yuri ;
Zeng, Dongli ;
Kyung-Wan Nam ;
Xu, Wenqian ;
Du, Lin-Shu ;
Graetz, Jason ;
Yang, Xiao-Qing ;
Zhu, Yimei ;
Parise, John B. ;
Grey, Clare P. ;
Khalifah, Peter G. .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (18) :8799-8809
[9]  
BONDAREVA OS, 1978, KRISTALLOGRAFIYA+, V23, P487
[10]   BOND-VALENCE PARAMETERS FOR SOLIDS [J].
BRESE, NE ;
OKEEFFE, M .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 1991, 47 :192-197