Characterization of functional domains of the SMN protein in vivo

被引:48
作者
Wang, J
Dreyfuss, G [1 ]
机构
[1] Univ Penn, Sch Med, Howard Hughes Med Inst, Philadelphia, PA 19104 USA
[2] Univ Penn, Sch Med, Dept Biochem & Biophys, Philadelphia, PA 19104 USA
关键词
D O I
10.1074/jbc.M105059200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Survival of Motor Neurons (SMN) is the disease gene of spinal muscular atrophy. We have previously established a genetic system based on the chicken pre-B cell line DT40, in which expression of SMN protein is regulated by tetracycline, to study the function of SMN in vivo. Depletion of SMN protein is lethal to these cells. Here we tested the functionality of mutant SMN proteins by determining their capacity to rescue the cells after depletion of wild-type SMN. Surprisingly, all of the spinal muscular atrophy-associated missense mutations tested were able to support cell viability and proliferation. Deletion of the amino acids encoded by exon 7 of the SMN gene resulted in a partial loss of function. A mutant SMN protein lacking both the tyrosine/glycine repeat (in exon 6) and exon 7 failed to sustain viability, indicating that the C terminus of the protein is critical for SMN activity. Interestingly, the Tudor domain of SMN, encoded by exon 3, does not appear to be essential for SMN function since a mutant deleted of this domain restored cell viability. Unexpectedly, a chicken SMN mutant (Delta N39) lacking the N-terminal 39 amino acids that encompass the Gemin2-binding domain also rescued the lethal phenotype. Moreover, the level of Gemin2 in Delta N39-rescued cells was significantly reduced, indicating that Gemin2 is not required for Delta N39 to perform the essential function of SMN in DT40 cells. These findings suggest that SMN may perform a novel function in DT40 cells.
引用
收藏
页码:45387 / 45393
页数:7
相关论文
共 44 条
[1]   Essential role for the tudor domain of SMN in spliceosomal U snRNP assembly:: implications for spinal muscular atrophy [J].
Buhler, D ;
Raker, V ;
Lührmann, R ;
Fischer, U .
HUMAN MOLECULAR GENETICS, 1999, 8 (13) :2351-2357
[2]   VESICULAR STOMATITIS-VIRUS G GLYCOPROTEIN PSEUDOTYPED RETROVIRAL VECTORS - CONCENTRATION TO VERY HIGH-TITER AND EFFICIENT GENE-TRANSFER INTO MAMMALIAN AND NONMAMMALIAN CELLS [J].
BURNS, JC ;
FRIEDMANN, T ;
DRIEVER, W ;
BURRASCANO, M ;
YEE, JK .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (17) :8033-8037
[3]   A FRAME-SHIFT DELETION IN THE SURVIVAL MOTOR-NEURON GENE IN SPANISH SPINAL MUSCULAR-ATROPHY PATIENTS [J].
BUSSAGLIA, E ;
CLERMONT, O ;
TIZZANO, E ;
LEFEBVRE, S ;
BURGLEN, L ;
CRUAUD, C ;
URTIZBEREA, JA ;
COLOMER, J ;
MUNNICH, A ;
BAIGET, M ;
MELKI, J .
NATURE GENETICS, 1995, 11 (03) :335-337
[4]   Direct interaction of Smn with dp103, a putative RNA helicase: a role for Smn in transcription regulation? [J].
Campbell, L ;
Hunter, KMD ;
Mohaghegh, P ;
Tinsley, JM ;
Brasch, MA ;
Davies, KE .
HUMAN MOLECULAR GENETICS, 2000, 9 (07) :1093-1100
[5]  
CHANG JG, 1995, AM J HUM GENET, V57, P1503
[6]   Gemin4: A novel component of the SMN complex that is found in both gems and nucleoli [J].
Charroux, B ;
Pellizzoni, L ;
Perkinson, RA ;
Yong, J ;
Shevchenko, A ;
Mann, M ;
Dreyfuss, G .
JOURNAL OF CELL BIOLOGY, 2000, 148 (06) :1177-1186
[7]   Gemin3: A novel DEAD box protein that interacts with SMN, the spinal muscular atrophy gene product, and is a component of gems [J].
Charroux, B ;
Pellizzoni, L ;
Perkinson, RA ;
Shevchenko, A ;
Mann, M ;
Dreyfuss, G .
JOURNAL OF CELL BIOLOGY, 1999, 147 (06) :1181-1193
[8]   Deletion of murine SMN exon 7 directed to skeletal muscle leads to severe muscular dystrophy [J].
Cifuentes-Diaz, C ;
Frugier, T ;
Tiziano, FD ;
Lacéne, E ;
Roblot, N ;
Joshi, V ;
Moreau, MH ;
Melki, J .
JOURNAL OF CELL BIOLOGY, 2001, 152 (05) :1107-1114
[9]  
COBBEN JM, 1995, AM J HUM GENET, V57, P805
[10]   The survival motor neuron protein in spinal muscular atrophy [J].
Coovert, DD ;
Le, TT ;
McAndrew, PE ;
Strasswimmer, J ;
Crawford, TO ;
Mendell, JR ;
Coulson, SE ;
Androphy, EJ ;
Prior, TW ;
Burghes, AHM .
HUMAN MOLECULAR GENETICS, 1997, 6 (08) :1205-1214