Convergent algorithms for frequency weighted L-2 model reduction

被引:20
作者
Yan, WY [1 ]
Xie, LH [1 ]
Lam, J [1 ]
机构
[1] UNIV HONG KONG,DEPT MECH ENGN,HONG KONG,HONG KONG
关键词
linear systems; model reduction; Kalman filters; L-2; norm; optimization;
D O I
10.1016/S0167-6911(97)00022-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is concerned with computing an L-2-optimal reduced-order model for a given stable multivariable linear system in the presence of input and output frequency weightings. By parametrizing a class of reduced-order models in terms of an orthogonal projection and using manifold techniques as tools, both continuous and iterative algorithms are derived and their convergence properties are established. As an application, we show that an L-2 optimal reduced-order filter in the closed-loop sense can be computed using these algorithms. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:11 / 20
页数:10
相关论文
共 11 条
[1]  
[Anonymous], 1984, P C DEC CONTR
[2]  
BARATCHART L, 1991, AUTOMATICA, P413
[3]  
BARATCHART L, 1987, MODELLING ROBUSTNESS, P119
[4]  
HALEVI Y, 1990, PROCEEDINGS OF THE 29TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, P2906, DOI 10.1109/CDC.1990.203314
[5]   THE OPTIMAL PROJECTION EQUATIONS FOR MODEL-REDUCTION AND THE RELATIONSHIPS AMONG THE METHODS OF WILSON, SKELTON, AND MOORE [J].
HYLAND, DC ;
BERNSTEIN, DS .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1985, 30 (12) :1201-1211
[6]  
LEPSCHY A, 1991, PROCEEDINGS OF THE 30TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-3, P2321, DOI 10.1109/CDC.1991.261583
[7]   APPROXIMATION OF LINEAR CONSTANT SYSTEMS [J].
MEIER, L ;
LUENBERG.DG .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1967, AC12 (05) :585-&
[8]   A NEW ALGORITHM FOR L2 OPTIMAL-MODEL REDUCTION [J].
SPANOS, JT ;
MILMAN, MH ;
MINGORI, DL .
AUTOMATICA, 1992, 28 (05) :897-909
[9]   OPTIMUM SOLUTION OF MODEL-REDUCTION PROBLEM [J].
WILSON, DA .
PROCEEDINGS OF THE INSTITUTION OF ELECTRICAL ENGINEERS-LONDON, 1970, 117 (06) :1161-+
[10]  
YAN WY, 1996, P 35 IEEE C DEC CONT, P2008