Neural network based electronic nose for apple ripeness determination

被引:37
作者
Hines, EL [1 ]
Llobet, E
Gardner, JW
机构
[1] Univ Warwick, Sch Engn, Div Elect & Elect Engn, Coventry CV4 7AL, W Midlands, England
[2] Univ Rovira & Virgili, Dept Elect Engn, Tarragona 43006, Spain
关键词
D O I
10.1049/el:19990547
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
It is possible to non-destructively determine apple ripeness using a simple electronic nose. The instrument employs tin oxide resistive gas sensors and neural networks (fuzzy ARTMAP, LVQ and MLP) to classify the samples into three states df ripeness with 100% accuracy. Fuzzy ARTMAP was found to be the best classifier in the presence of simulated Gaussian noise.
引用
收藏
页码:821 / 823
页数:3
相关论文
共 8 条
  • [1] CHO SI, 1990, T ASAE, V33, P1043, DOI 10.13031/2013.31436
  • [2] Galili N, 1998, T ASAE, V41, P399, DOI 10.13031/2013.17164
  • [3] Gardner J. W., 1999, ELECT NOSES PRINCIPL
  • [4] LLOBET E, 1999, UNPUB SENS ACTUATO B
  • [5] PARE JRJ, 1997, INSTRUMENTAL TECHNIQ
  • [6] Electronic sensing of aromatic volatiles for quality sorting of blueberries
    Simon, JE
    Hetzroni, A
    Bordelon, B
    Miles, GE
    Charles, DJ
    [J]. JOURNAL OF FOOD SCIENCE, 1996, 61 (05) : 967 - &
  • [7] WAI WK, 1995, T ASAE, V38, P849, DOI 10.13031/2013.27900
  • [8] Peel gloss as a potential indicator of banana ripeness
    Ward, G
    Nussinovitch, A
    [J]. FOOD SCIENCE AND TECHNOLOGY-LEBENSMITTEL-WISSENSCHAFT & TECHNOLOGIE, 1996, 29 (03): : 289 - 294