An accelerated conjugate gradient algorithm to compute low-lying eigenvalues - A study for the Dirac operator in SU(2) lattice QCD

被引:125
作者
Kalkreuter, T [1 ]
Simma, H [1 ]
机构
[1] DESY, D-15738 ZEUTHEN, GERMANY
关键词
D O I
10.1016/0010-4655(95)00126-3
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The low-lying eigenvalues of a (sparse) Hermitian matrix can be computed with controlled numerical errors by a conjugate gradient (CG) method. This CG algorithm is accelerated by alternating it with exact diagonalizations in the subspace spanned by the numerically computed eigenvectors. We study this combined algorithm in case of the Dirac operator with (dynamical) Wilson fermions in four-dimensional SU(2) gauge fields. The algorithm is numerically very stable and can be parallelized in an efficient way, On lattices of sizes 4(4)-16(4) an acceleration of the pure CG method by a factor of 4-8 is found.
引用
收藏
页码:33 / 47
页数:15
相关论文
共 24 条
[1]  
[Anonymous], 1992, SMR
[2]   A NEW SIMULATION ALGORITHM FOR LATTICE QCD WITH DYNAMICAL QUARKS [J].
BUNK, B ;
JANSEN, K ;
JEGERLEHNER, B ;
LUSCHER, M ;
SIMMA, H ;
SOMMER, R .
NUCLEAR PHYSICS B, 1995, :49-55
[3]  
BUNK B, 1994, CONJUGATE GRADIENT A
[4]  
BUNK B, UNPUB
[5]  
Collatz L., 1964, FUNKTIONANALYSIS NUM
[6]   COMPUTING EIGENVALUES OF VERY LARGE SYMMETRIC-MATRICES - AN IMPLEMENTATION OF A LANCZOS-ALGORITHM WITH NO RE-ORTHOGONALIZATION [J].
CULLUM, J ;
WILLOUGHBY, RA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1981, 44 (02) :329-358
[9]  
Golub G.H., 1990, MATRIX COMPUTATIONS
[10]   UNIVERSAL FLUCTUATIONS IN SPECTRA OF THE LATTICE DIRAC OPERATOR [J].
HALASZ, MA ;
VERBAARSCHOT, JJM .
PHYSICAL REVIEW LETTERS, 1995, 74 (20) :3920-3923