A miRNA-regulatory network explains how dysregulated miRNAs perturb oncogenic processes across diverse cancers

被引:147
作者
Plaisier, Christopher L. [1 ]
Pan, Min [1 ]
Baliga, Nitin S. [1 ]
机构
[1] Inst Syst Biol, Seattle, WA 98109 USA
关键词
GENE-EXPRESSION PROFILES; MICRORNA EXPRESSION; MESSENGER-RNAS; SYSTEMATIC IDENTIFICATION; TARGET PREDICTION; MOTIF DISCOVERY; TRANSCRIPTS; CARCINOMAS; PATTERNS; CLASSIFICATION;
D O I
10.1101/gr.133991.111
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Genes regulated by the same miRNA can be discovered by virtue of their coexpression at the transcriptional level and the presence of a conserved miRNA-binding site in their 3' UTRs. Using this principle we have integrated the three best performing and complementary algorithms into a framework for inference of regulation by miRNAs (FIRM) from sets of coexpressed genes. We demonstrate the utility of FIRM by inferring a cancer-miRNA regulatory network through the analysis of 2240 gene coexpression signatures from 46 cancers. By analyzing this network for functional enrichment of known hallmarks of cancer we have discovered a subset of 13 miRNAs that regulate oncogenic processes across diverse cancers. We have performed experiments to test predictions from this miRNA-regulatory network to demonstrate that miRNAs of the miR-29 family (miR-29a, miR-29b, and miR-29c) regulate specific genes associated with tissue invasion and metastasis in lung adenocarcinoma. Further, we highlight the specificity of using FIRM inferences to identify miRNA-regulated genes by experimentally validating that miR-767-5p, which partially shares the miR-29 seed sequence, regulates only a subset of miR-29 targets. By providing mechanistic linkage between miRNA dysregulation in cancer, their binding sites in the 3'UTRs of specific sets of coexpressed genes, and their associations with known hallmarks of cancer, FIRM, and the inferred cancer miRNA-regulatory network will serve as a powerful public resource for discovery of potential cancer biomarkers.
引用
收藏
页码:2302 / 2314
页数:13
相关论文
共 66 条
[1]   Improved scoring of functional groups from gene expression data by decorrelating GO graph structure [J].
Alexa, Adrian ;
Rahnenfuehrer, Joerg ;
Lengauer, Thomas .
BIOINFORMATICS, 2006, 22 (13) :1600-1607
[2]   The impact of microRNAs on protein output [J].
Baek, Daehyun ;
Villen, Judit ;
Shin, Chanseok ;
Camargo, Fernando D. ;
Gygi, Steven P. ;
Bartel, David P. .
NATURE, 2008, 455 (7209) :64-U38
[3]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[4]   MicroRNAs: Target Recognition and Regulatory Functions [J].
Bartel, David P. .
CELL, 2009, 136 (02) :215-233
[5]   Gene-expression profiles predict survival of patients with lung adenocarcinoma [J].
Beer, DG ;
Kardia, SLR ;
Huang, CC ;
Giordano, TJ ;
Levin, AM ;
Misek, DE ;
Lin, L ;
Chen, GA ;
Gharib, TG ;
Thomas, DG ;
Lizyness, ML ;
Kuick, R ;
Hayasaka, S ;
Taylor, JMG ;
Iannettoni, MD ;
Orringer, MB ;
Hanash, S .
NATURE MEDICINE, 2002, 8 (08) :816-824
[6]   The microRNA.org resource: targets and expression [J].
Betel, Doron ;
Wilson, Manda ;
Gabow, Aaron ;
Marks, Debora S. ;
Sander, Chris .
NUCLEIC ACIDS RESEARCH, 2008, 36 :D149-D153
[7]   Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites [J].
Betel, Doron ;
Koppal, Anjali ;
Agius, Phaedra ;
Sander, Chris ;
Leslie, Christina .
GENOME BIOLOGY, 2010, 11 (08)
[8]   Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses [J].
Bhattacharjee, A ;
Richards, WG ;
Staunton, J ;
Li, C ;
Monti, S ;
Vasa, P ;
Ladd, C ;
Beheshti, J ;
Bueno, R ;
Gillette, M ;
Loda, M ;
Weber, G ;
Mark, EJ ;
Lander, ES ;
Wong, W ;
Johnson, BE ;
Golub, TR ;
Sugarbaker, DJ ;
Meyerson, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (24) :13790-13795
[9]   MiR-130a, miR-203 and miR-205 jointly repress key oncogenic pathways and are downregulated in prostate carcinoma [J].
Boll, K. ;
Reiche, K. ;
Kasack, K. ;
Moerbt, N. ;
Kretzschmar, A. K. ;
Tomm, J. M. ;
Verhaegh, G. ;
Schalken, J. ;
von Bergen, M. ;
Horn, F. ;
Hackermueller, J. .
ONCOGENE, 2013, 32 (03) :277-285
[10]   Principles of MicroRNA-target recognition [J].
Brennecke, J ;
Stark, A ;
Russell, RB ;
Cohen, SM .
PLOS BIOLOGY, 2005, 3 (03) :404-418