Synchronization of chaotic systems with different order -: art. no. 036226

被引:77
作者
Femat, R [1 ]
Solís-Perales, G [1 ]
机构
[1] IPICyT, Dept Matemat Aplicadas & Sistemas Computac, San Luis Potosi 78231, Mexico
来源
PHYSICAL REVIEW E | 2002年 / 65卷 / 03期
关键词
D O I
10.1103/PhysRevE.65.036226
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The chaotic synchronization of third-order systems and second-order driven oscillator is studied in this paper. Such a problem is related to synchronization of strictly different chaotic systems. We show that dynamical evolution of second-order driven oscillators can be synchronized with the canonical projection of a third-order chaotic system. In this sense, it is said that synchronization is achieved in reduced order. Duffing equation is chosen as slave system whereas Chua oscillator is defined as master system. The synchronization scheme has nonlinear feedback structure. The reduced-order synchronization is attained in a practical sense, i.e., the difference e=x(3)-x(1)' is close to zero for all time tgreater than or equal tot(0)greater than or equal to0, where t(0) denotes the time of the control activation.
引用
收藏
页码:1 / 036226
页数:7
相关论文
共 25 条
[1]   CLOSED-LOOP SUPPRESSION OF CHAOS IN NONLINEAR DRIVEN OSCILLATORS [J].
AGUIRRE, LA ;
BILLINGS, SA .
JOURNAL OF NONLINEAR SCIENCE, 1995, 5 (03) :189-206
[2]   Cooperative behavior of a chain of synaptically coupled chaotic neurons [J].
Bazhenov, M ;
Huerta, R ;
Rabinovich, MI ;
Sejnowski, T .
PHYSICA D, 1998, 116 (3-4) :392-400
[3]   Integral behavior for localized synchronization in nonidentical extended systems [J].
Bragard, J ;
Boccaletti, S .
PHYSICAL REVIEW E, 2000, 62 (05) :6346-6351
[4]   A unifying definition of synchronization for dynamical systems [J].
Brown, R ;
Kocarev, L .
CHAOS, 2000, 10 (02) :344-349
[5]   An adaptive approach to the control and synchronization of continuous-time chaotic systems [J].
DiBernardo, M .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (03) :557-568
[6]   On the chaos synchronization phenomena [J].
Femat, R ;
Solís-Perales, G .
PHYSICS LETTERS A, 1999, 262 (01) :50-60
[7]   Synchronization of a class of strictly different chaotic oscillators [J].
Femat, R ;
Alvarez-Ramirez, J .
PHYSICS LETTERS A, 1997, 236 (04) :307-313
[8]   Laplace domain controllers for chaos control [J].
Femat, R ;
Capistrán-Tobías, J ;
Solís-Perales, G .
PHYSICS LETTERS A, 1999, 252 (1-2) :27-36
[9]   Nonlinear observer design to synchronize hyperchaotic systems via a scalar signal [J].
Grassi, G ;
Mascolo, S .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1997, 44 (10) :1011-1014
[10]   Clusters of synchronization and bistability in lattices of chaotic neurons [J].
Huerta, R ;
Bazhenov, M ;
Rabinovich, MI .
EUROPHYSICS LETTERS, 1998, 43 (06) :719-724