Singular potentials and limit cycles

被引:133
作者
Beane, SR [1 ]
Bedaque, PF
Childress, L
Kryjevski, A
McGuire, J
van Kolck, U
机构
[1] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[2] Univ Washington, Inst Nucl Theory, Seattle, WA 98195 USA
[3] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA
[4] Brookhaven Natl Lab, RIKEN BNL, Upton, NY 11973 USA
[5] CALTECH, Kellogg Radiat Lab, Pasadena, CA 91125 USA
来源
PHYSICAL REVIEW A | 2001年 / 64卷 / 04期
关键词
D O I
10.1103/PhysRevA.64.042103
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We show that a central l/r(n) singular potential (with n greater than or equal to2) is renormalized by a one-parameter square-well counterterm; low-energy observables are made independent of the square-well width by adjusting the square-well strength. We find a closed form expression for the renormalization-group evolution of the square-well counterterm.
引用
收藏
页码:421031 / 421038
页数:8
相关论文
共 21 条
[1]  
[Anonymous], UNPUB
[2]  
BEANE SR, NUCLTH0008064
[3]   The three-boson system with short-range interactions [J].
Bedaque, PF ;
Hammer, HW ;
van Kolck, U .
NUCLEAR PHYSICS A, 1999, 646 (04) :444-466
[4]   Renormalization of the three-body system with short-range interactions [J].
Bedaque, PF ;
Hammer, HW ;
van Kolck, U .
PHYSICAL REVIEW LETTERS, 1999, 82 (03) :463-467
[5]   Renormalization of the inverse square potential [J].
Camblong, HE ;
Epele, LN ;
Fanchiotti, H ;
Canal, CAC .
PHYSICAL REVIEW LETTERS, 2000, 85 (08) :1590-1593
[6]   Dimensional transmutation and dimensional regularization in quantum mechanics II. Rotational invariance [J].
Camblong, HE ;
Epele, LN ;
Fanchiotti, H ;
Canal, CAG .
ANNALS OF PHYSICS, 2001, 287 (01) :57-100
[7]  
CAMBLONG HE, HEPTH0003255
[8]   SINGULAR POTENTIALS [J].
CASE, KM .
PHYSICAL REVIEW, 1950, 80 (05) :797-806
[9]   BOUND STATES OF A CHARGED PARTICLE IN A DIPOLE FIELD [J].
CRAWFORD, OH .
PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON, 1967, 91 (572P) :279-&
[10]  
EFIMOV VN, 1971, SOV J NUCL PHYS+, V12, P589