Deep learning based tissue analysis predicts outcome in colorectal cancer

被引:423
作者
Bychkov, Dmitrii [1 ]
Linder, Nina [1 ,2 ]
Turkki, Riku [1 ]
Nordling, Stig [3 ]
Kovanen, Panu E. [4 ,5 ]
Verrill, Clare [6 ]
Walliander, Margarita [1 ]
Lundin, Mikael [1 ]
Haglund, Caj [7 ,8 ,9 ]
Lundin, Johan [1 ,10 ]
机构
[1] Univ Helsinki, Inst Mol Med Finland FIMM, Helsinki Inst Life Sci HiLIFE, Helsinki, Finland
[2] Uppsala Univ, Dept Womens & Childrens Hlth, IMCH, Uppsala, Sweden
[3] Univ Helsinki, Dept Pathol, Med, Helsinki, Finland
[4] Univ Helsinki, Dept Pathol, Helsinki, Finland
[5] Helsinki Univ Hosp, HUSLAB, Helsinki, Finland
[6] Univ Oxford, Nuffield Dept Surg Sci, NIHR Oxford Biomed Res Ctr, Oxford, England
[7] Univ Helsinki, Dept Surg, Helsinki, Finland
[8] Helsinki Univ Hosp, Helsinki, Finland
[9] Univ Helsinki, Res Programs Unit, Translat Canc Biol, Helsinki, Finland
[10] Karolinska Inst, Dept Publ Hlth Sci, Global Hlth IHCAR, Stockholm, Sweden
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
关键词
NEURAL-NETWORKS; CLASSIFICATION; EXPRESSION; MARKERS;
D O I
10.1038/s41598-018-21758-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Image-based machine learning and deep learning in particular has recently shown expert-level accuracy in medical image classification. In this study, we combine convolutional and recurrent architectures to train a deep network to predict colorectal cancer outcome based on images of tumour tissue samples. The novelty of our approach is that we directly predict patient outcome, without any intermediate tissue classification. We evaluate a set of digitized haematoxylin-eosin-stained tumour tissue microarray (TMA) samples from 420 colorectal cancer patients with clinicopathological and outcome data available. The results show that deep learning-based outcome prediction with only small tissue areas as input outperforms (hazard ratio 2.3; CI 95% 1.79-3.03; AUC 0.69) visual histological assessment performed by human experts on both TMA spot (HR 1.67; CI 95% 1.28-2.19; AUC 0.58) and whole-slide level (HR 1.65; CI 95% 1.30-2.15; AUC 0.57) in the stratification into low-and high-risk patients. Our results suggest that state-of-the-art deep learning techniques can extract more prognostic information from the tissue morphology of colorectal cancer than an experienced human observer.
引用
收藏
页数:11
相关论文
共 52 条
[1]   Artificial neural networks for diagnosis and survival prediction in colon cancer [J].
Ahmed, Farid E. .
MOLECULAR CANCER, 2005, 4 (1)
[2]  
[Anonymous], 2015, Proceedings of the IEEE conference on computer vision and pattern recognition, DOI DOI 10.1109/CVPR.2015.7299007
[3]   The tumor microenvironment at a glance [J].
Balkwill, Frances R. ;
Capasso, Melania ;
Hagemann, Thorsten .
JOURNAL OF CELL SCIENCE, 2012, 125 (23) :5591-5596
[4]   Systematic Analysis of Breast Cancer Morphology Uncovers Stromal Features Associated with Survival [J].
Beck, Andrew H. ;
Sangoi, Ankur R. ;
Leung, Samuel ;
Marinelli, Robert J. ;
Nielsen, Torsten O. ;
van de Vijver, Marc J. ;
West, Robert B. ;
van de Rijn, Matt ;
Koller, Daphne .
SCIENCE TRANSLATIONAL MEDICINE, 2011, 3 (108)
[5]   Artificial neural networks applied to outcome prediction for colorectal cancer patients in separate institutions [J].
Bottaci, L ;
Drew, PJ ;
Hartley, JE ;
Hadfield, MB ;
Farouk, R ;
Lee, PWR ;
Macintyre, IMC ;
Duthie, GS ;
Monson, JRT .
LANCET, 1997, 350 (9076) :469-472
[6]  
Burke HB, 1997, CANCER, V79, P857, DOI 10.1002/(SICI)1097-0142(19970215)79:4<857::AID-CNCR24>3.0.CO
[7]  
2-Y
[8]   Mitosis Detection in Breast Cancer Histology Images with Deep Neural Networks [J].
Ciresan, Dan C. ;
Giusti, Alessandro ;
Gambardella, Luca M. ;
Schmidhuber, Juergen .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2013, PT II, 2013, 8150 :411-418
[9]  
COX DR, 1972, J R STAT SOC B, V34, P187
[10]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+