Genetic mapping of ripening and ethylene-related loci in tomato

被引:26
作者
Giovannoni, J [1 ]
Yen, H
Shelton, B
Miller, S
Vrebalov, J
Kannan, P
Tieman, D
Hackett, R
Grierson, D
Klee, H
机构
[1] Texas A&M Univ, Dept Hort Sci, College Stn, TX 77843 USA
[2] Texas A&M Univ, Crop Biotechnol Ctr, College Stn, TX 77843 USA
[3] Univ Florida, Dept Hort Sci, Gainesville, FL 32611 USA
[4] Univ Nottingham, Dept Physiol & Environm Sci, Loughborough LE12 5RD, Leics, England
关键词
RFLP mapping; fruit ripening; ethylene; tomato;
D O I
10.1007/s001220051161
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The regulation of tomato fruit development and ripening is influenced by a large number of loci as demonstrated by the number of existing non-allelic fruit development mutations and a multitude of genes showing ripening-related expression patterns. Furthermore, analysis of transgenic and naturally occurring tomato mutants confirms the pivotal role of the gaseous hormone ethylene in the regulation of climacteric ripening. Here we report RFLP mapping of 32 independent tomato loci corresponding to genes known or hypothesized to influence fruit ripening and/or ethylene response. Mapped ethylene-response sequences fall into the categories of genes involved in either hormone biosynthesis or perception, while additional ripening-related genes include those involved in cell-wall metabolism and pigment biosynthesis. The placement of ripening and ethylene-response loci on the tomato RFLP map will facilitate both the identification and exclusion of candidate gene sequences corresponding to identified single gene and quantitative trait loci contributing to fruit development and ethylene response.
引用
收藏
页码:1005 / 1013
页数:9
相关论文
共 59 条
[1]  
BAILE J, 1981, RECENT ADV BIOCH FRU, P1
[2]   Differential expression of the 1-aminocyclopropane-1-carboxylate oxidase gene family of tomato [J].
Barry, CS ;
Blume, B ;
Bouzayen, M ;
Cooper, W ;
Hamilton, AJ ;
Grierson, D .
PLANT JOURNAL, 1996, 9 (04) :525-535
[3]   USING ANTISENSE RNA TO STUDY GENE-FUNCTION - INHIBITION OF CAROTENOID BIOSYNTHESIS IN TRANSGENIC TOMATOES [J].
BIRD, CR ;
RAY, JA ;
FLETCHER, JD ;
BONIWELL, JM ;
BIRD, AS ;
TEULIERES, C ;
BLAIN, I ;
BRAMLEY, PM ;
SCHUCH, W .
BIO-TECHNOLOGY, 1991, 9 (07) :635-639
[4]   PHYSICAL LINKAGE OF THE SLG AND SRK GENES AT THE SELF-INCOMPATIBILITY LOCUS OF BRASSICA-OLERACEA [J].
BOYES, DC ;
NASRALLAH, JB .
MOLECULAR & GENERAL GENETICS, 1993, 236 (2-3) :369-373
[5]   ARABIDOPSIS ETHYLENE-RESPONSE GENE ETR1 - SIMILARITY OF PRODUCT TO 2-COMPONENT REGULATORS [J].
CHANG, C ;
KWOK, SF ;
BLEECKER, AB ;
MEYEROWITZ, EM .
SCIENCE, 1993, 262 (5133) :539-544
[6]   Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins [J].
Chao, QM ;
Rothenberg, M ;
Solano, R ;
Roman, G ;
Terzaghi, W ;
Ecker, JR .
CELL, 1997, 89 (07) :1133-1144
[7]   INTERACTION OF A DEVELOPMENTALLY REGULATED DNA-BINDING FACTOR WITH SITES FLANKING 2 DIFFERENT FRUIT-RIPENING GENES FROM TOMATO [J].
CORDES, S ;
DEIKMAN, J ;
MARGOSSIAN, LJ ;
FISCHER, RL .
PLANT CELL, 1989, 1 (10) :1025-1034
[8]   SILVER IONS INHIBIT THE ETHYLENE-STIMULATED PRODUCTION OF RIPENING-RELATED MESSENGER-RNAS IN TOMATO [J].
DAVIES, KM ;
HOBSON, GE ;
GRIERSON, D .
PLANT CELL AND ENVIRONMENT, 1988, 11 (08) :729-738
[9]   MOLECULAR-CLONING OF TOMATO FRUIT POLYGALACTURONASE - ANALYSIS OF POLYGALACTURONASE MESSENGER-RNA LEVELS DURING RIPENING [J].
DELLAPENNA, D ;
ALEXANDER, DC ;
BENNETT, AB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (17) :6420-6424
[10]  
ECKER JR, 1995, SCIENCE, V268, P667, DOI 10.1126/science.7732375