Reduction of nanostructured CuO bundles: Correlation between microstructure and reduction properties

被引:44
作者
Chen, Chongqi [1 ]
Zheng, Yuanhui [1 ]
Zhan, Yingying [1 ]
Lin, Xingyi [1 ]
Zheng, Qi [1 ]
Wei, Kemei [1 ]
机构
[1] Fuzhou Univ, Natl Engn Res Ctr Chem Fertilizer Catalyst, Fuzhou 350002, Peoples R China
关键词
D O I
10.1021/cg7011843
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A high yield of nanostructured CuO bundles with different building blocks is successfully prepared through simple hydrothermal and thermal treatment methods. The microstructure of the as-synthesized samples is characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N-2 physisorption, and IR spectra. The results show that the microstructure of the CuO bundles, such as different grain sizes, BET surface areas, pore sizes, defects and morphologies of building blocks can be obtained by different synthetic methods. Moreover, H-2-TPR and in situ XRD experiments are used to investigate the reduction properties of the nanostructured CuO bundles. It is found that there are two different reduction pathways involved in the reduction processes at 30 mL/min of 10 vol. % H-2/N-2: for the sample synthesized through the hydrothermal method (CuO-HT), all of the CuO is reduced directly to metallic Cu; however, for the sample synthesized through the thermal treatment method (CuO-TT), all of the CuO is reduced to Cu2O intermediate, then to metallic Cu, and the reduction temperature of the CuO-HT sample is much higher than that of the CuO-TT sample. These different reduction properties of the as-synthesized samples should be due to their different grain sizes, defect concentrations, and pore structures.
引用
收藏
页码:3549 / 3554
页数:6
相关论文
共 35 条
[1]   Formation of single-phase CuO quantum particles [J].
Borgohain, K ;
Mahamuni, S .
JOURNAL OF MATERIALS RESEARCH, 2002, 17 (05) :1220-1223
[2]  
BUSH AA, 2002, CRYSTALLOGR REP, V47, P372
[3]   Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow CU2O nanospheres [J].
Chang, Y ;
Teo, JJ ;
Zeng, HC .
LANGMUIR, 2005, 21 (03) :1074-1079
[4]   Controlled synthesis and. self-assembly of single-crystalline CuO nanorods and nanoribbons [J].
Chang, Y ;
Zeng, HC .
CRYSTAL GROWTH & DESIGN, 2004, 4 (02) :397-402
[5]   Yttria-stabilized zirconia supported copper oxide catalyst .1. Effect of oxygen vacancy of support on copper oxide reduction [J].
Dow, WP ;
Wang, YP ;
Huang, TJ .
JOURNAL OF CATALYSIS, 1996, 160 (02) :155-170
[6]   Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery [J].
Gao, XP ;
Bao, JL ;
Pan, GL ;
Zhu, HY ;
Huang, PX ;
Wu, F ;
Song, DY .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (18) :5547-5551
[7]   Redox behavior of copper oxide/zinc oxide catalysts in the steam reforming of methanol studied by in situ X-ray diffraction and absorption spectroscopy [J].
Günter, MM ;
Ressler, T ;
Jentoft, RE ;
Bems, B .
JOURNAL OF CATALYSIS, 2001, 203 (01) :133-149
[8]   CuO nanowires can be synthesized by heating copper substrates in air [J].
Jiang, XC ;
Herricks, T ;
Xia, YN .
NANO LETTERS, 2002, 2 (12) :1333-1338
[9]   Colloid chemical reaction route to the preparation of nearly monodispersed perylene nanoparticles: Size-tunable synthesis and three-dimensional self-organization [J].
Kang, Longtian ;
Wang, Zhechen ;
Cao, Zongwei ;
Ma, Ying ;
Fu, Hongbing ;
Yao, Jiannian .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (23) :7305-7312
[10]   Reduction of CuO and Cu2O with H2:H embedding and kinetic effects in the formation of suboxides [J].
Kim, JY ;
Rodriguez, JA ;
Hanson, JC ;
Frenkel, AI ;
Lee, PL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (35) :10684-10692