Remodelling inactivation gating of Kv4 channels by KChIP1, a small-molecular-weight calcium-binding protein

被引:114
作者
Beck, EJ
Bowlby, M
An, WF
Rhodes, KJ
Covarrubias, M
机构
[1] Thomas Jefferson Univ, Jefferson Med Coll, Dept Pathol Anat & Cell Biol, Philadelphia, PA 19107 USA
[2] Wyeth Ayerst Res, Princeton, NJ 08543 USA
[3] Millennium Pharmaceut Inc, Cambridge, MA 02139 USA
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2002年 / 538卷 / 03期
关键词
D O I
10.1113/jphysiol.2001.013127
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Calcium-binding proteins dubbed KChIPs favour surface expression and modulate inactivation gating of neuronal and cardiac A-type Kv4 channels. To investigate their mechanism of action, Kv4.1 or Kv4.3 were expressed in Xenopus laevis oocytes, either alone or together with KChIP1, and the K+ currents were recorded using the whole-oocyte voltage-clamp and patch-clamp methods. KChIP I similarly remodels gating of both channels. At positive voltages, KChIP 1 slows the early phase of the development of macroscopic inactivation. By contrast, the late phase is accelerated, which allows complete inactivation in < 500 ms. Thus, superimposed traces from control and KChIP1-remodelled currents crossover. KChIP1 also accelerates closed-state inactivation and recovery from inactivation (3- to 5-fold change). The latter effect is dominating and, consequently, the prepulse inactivation curves exhibit depolarizing shifts (DeltaV = 4-12 mV). More favourable closed-state inactivation may also contribute to the overall faster inactivation at positive voltages because Kv4 channels significantly inactivate from the preopen closed state. KChIP1 favours this pathway further by accelerating channel closing. The peak G-V curves are modestly leftward shifted in the presence of KChIP1, but the apparent 'threshold' voltage of current activation remains unaltered. Single Kv4.1 channels exhibited multiple conductance levels that ranged between 1.8 and 5.6 pS in the absence of KChIP 1 and between 1.9 and 5.3 pS in its presence. Thus, changes in unitary conductance do not contribute to current upregulation by KChIP1. An allosteric kinetic model explains the kinetic changes by assuming that KChIP1 mainly impairs open-state inactivation, favours channel closing and lowers the energy barrier of closed-state inactivation.
引用
收藏
页码:691 / 706
页数:16
相关论文
共 34 条
[1]   Modulation of A-type potassium channels by a family of calcium sensors [J].
An, WF ;
Bowlby, MR ;
Betty, M ;
Cao, J ;
Ling, HP ;
Mendoza, G ;
Hinson, JW ;
Mattsson, KI ;
Strassle, BW ;
Trimmer, JS ;
Rhodes, KJ .
NATURE, 2000, 403 (6769) :553-556
[2]   Conserved Kv4 N-terminal domain critical for effects of Kv channel-interacting protein 2.2 on channel expression and gating [J].
Bähring, R ;
Dannenberg, J ;
Peters, HC ;
Leicher, T ;
Pongs, O ;
Isbrandt, D .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (26) :23888-23894
[3]   Kinetic analysis of open- and closed-state inactivation transitions in human Kv4.2 A-type potassium channels [J].
Bähring, R ;
Boland, LM ;
Varghese, A ;
Gebauer, M ;
Pongs, O .
JOURNAL OF PHYSIOLOGY-LONDON, 2001, 535 (01) :65-81
[4]   Kv4 channels exhibit modulation of closed-state inactivation in inside-out patches [J].
Beck, EJ ;
Covarrubias, M .
BIOPHYSICAL JOURNAL, 2001, 81 (02) :867-883
[5]  
Beck EJ, 2001, BIOPHYS J, V80, p439A
[6]   Interactions between multiple phosphorylation sites in the inactivation particle of a K+ channel -: Insights into the molecular mechanism of protein kinase C action [J].
Beck, EJ ;
Sorensen, RG ;
Slater, SJ ;
Covarrubias, M .
JOURNAL OF GENERAL PHYSIOLOGY, 1998, 112 (01) :71-84
[7]   The voltage sensor in voltage-dependent ion channels [J].
Bezanilla, F .
PHYSIOLOGICAL REVIEWS, 2000, 80 (02) :555-592
[8]   LOW-MOLECULAR-WEIGHT POLY(A)+ MESSENGER-RNA SPECIES ENCODE FACTORS THAT MODULATE GATING OF A NON-SHAKER A-TYPE K+ CHANNEL [J].
CHABALA, LD ;
BAKRY, N ;
COVARRUBIAS, M .
JOURNAL OF GENERAL PHYSIOLOGY, 1993, 102 (04) :713-728
[9]   VOLTAGE CLAMP STUDIES OF A TRANSIENT OUTWARD MEMBRANE CURRENT IN GASTROPOD NEURAL SOMATA [J].
CONNOR, JA ;
STEVENS, CF .
JOURNAL OF PHYSIOLOGY-LONDON, 1971, 213 (01) :21-&
[10]  
CONNOR JA, 1978, FED PROC, V37, P2139