Hydrodynamic behavior of Brownian particles in a position-dependent constant force field

被引:7
作者
Barbachoux, C
Debbasch, F
Rivet, JP
机构
[1] Ecole Normale Super, Lab Radioastron, F-75231 Paris 05, France
[2] Observ Nice, Lab GD Cassini, CNRS, F-06304 Nice, France
关键词
D O I
10.1063/1.532734
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The diffusion equation in physical space-time for a Brownian particle driven by an external force field has been derived by Smoluchowski in the two particular cases where the external field is uniform or varies linearly with position (elastic force). In more general cases, correction terms must be added to the Smoluchowski equation. We show here how to use a multi-scale Chapman-Enskog expansion to obtain, in the hydrodynamic limit, the first corrective terms to the Smoluchowski equation, without any restriction on the friction coefficient, and for any sufficiently small position-dependent constant force field. We also compare our approach with the works of Wilemski, Titulaer, and van Kampen. (C) 1999 American Institute of Physics. [S0022-2488(99)00806-3].
引用
收藏
页码:2891 / 2908
页数:18
相关论文
共 13 条
[1]  
Chapman S., 1970, The Mathematical Theory of Non-Uniform Gases, V3rd
[2]   Relativistic Ornstein-Uhlenbeck process [J].
Debbasch, F ;
Mallick, K ;
Rivet, JP .
JOURNAL OF STATISTICAL PHYSICS, 1997, 88 (3-4) :945-966
[3]   A diffusion equation from the relativistic Ornstein-Uhlenbeck process [J].
Debbasch, F ;
Rivet, JP .
JOURNAL OF STATISTICAL PHYSICS, 1998, 90 (5-6) :1179-1199
[4]   SYSTEMATIC ADIABATIC ELIMINATION FOR STOCHASTIC-PROCESSES [J].
HAAKE, F .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1982, 48 (01) :31-35
[5]   ADIABATIC ELIMINATION BY THE EIGENFUNCTION EXPANSION METHOD [J].
KANEKO, K .
PROGRESS OF THEORETICAL PHYSICS, 1981, 66 (01) :129-142
[6]  
Mackey M. C., 1992, TIMES ARROW ORIGINS
[7]   ALTERNATIVE ADIABATIC ELIMINATION SCHEMES FOR FAST VARIABLES - A CASE-STUDY [J].
THEISS, W ;
TITULAER, UM .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1983, 52 (01) :75-82
[8]   SYSTEMATIC SOLUTION PROCEDURE FOR FOKKER-PLANCK EQUATION OF A BROWNIAN PARTICLE IN HIGH-FRICTION CASE [J].
TITULAER, UM .
PHYSICA A, 1978, 91 (3-4) :321-344
[9]  
TITULAER UM, 1983, Z PHYS B CON MAT, V50, P71, DOI 10.1007/BF01307229
[10]  
Van Kampen N. G., 1992, STOCHASTIC PROCESSES