A discrete leading symbol and spectral asymptotics for natural differential operators

被引:11
作者
Avramidi, I [1 ]
Branson, T [1 ]
机构
[1] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
关键词
D O I
10.1006/jfan.2001.3886
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We initiate a systematic study of natural differential operators in Riemannian geometry whose leading symbols are not of Laplace type. In particular, we define a discrete leading symbol for such operators which may be computed pointwise, or from spectral asymptotics. We indicate how this can be applied to the computation of another kind of spectral asymptotics, namely asymptotic expansions of fundamental solutions, and to the computation of conformally covariant operators. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:292 / 337
页数:46
相关论文
共 17 条
[1]   Heat kernel asymptotics of operators with non-Laplace principal part [J].
Avramidi, IG ;
Branson, T .
REVIEWS IN MATHEMATICAL PHYSICS, 2001, 13 (07) :847-890
[2]  
Branson T, 2000, MATH RES LETT, V7, P245
[3]   Stein-Weiss operators and ellipticity [J].
Branson, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 151 (02) :334-383
[4]   Spectrum generating operators and intertwining operators for representations induced from a maximal parabolic subgroup [J].
Branson, T ;
Olafsson, G ;
Orsted, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 135 (01) :163-205
[5]  
Branson T, 1999, J LIE THEORY, V9, P491
[6]  
BRANSON T, UNPUB CONFORMALLY IN
[7]  
Branson T., 1996, PROC S PURE MATH, V59, P27
[8]   HARMONIC-ANALYSIS IN VECTOR-BUNDLES ASSOCIATED TO THE ROTATION AND SPIN GROUPS [J].
BRANSON, TP .
JOURNAL OF FUNCTIONAL ANALYSIS, 1992, 106 (02) :314-328
[9]  
Brauer R, 1937, CR HEBD ACAD SCI, V204, P1784
[10]   Semiholonomic verma modules [J].
Eastwood, M ;
Slovak, J .
JOURNAL OF ALGEBRA, 1997, 197 (02) :424-448