Vector breaking of replica symmetry in some low-temperature disordered systems

被引:18
作者
Dotsenko, V [1 ]
Mezard, M [1 ]
机构
[1] LD LANDAU THEORET PHYS INST,MOSCOW 117940,RUSSIA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1997年 / 30卷 / 10期
基金
美国国家科学基金会;
关键词
D O I
10.1088/0305-4470/30/10/015
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a new method to study disordered systems in the low-temperature limit. The method uses the replicated Hamiltonian. It studies the saddle points of this Hamiltonian and shows how the various saddle-point contributions can be resummed in order to obtain the scaling behaviour at low temperatures. In a large class of strongly disordered systems, it is necessary to include saddle points of the Hamiltonian which break the replica symmetry in a vector sector, as opposed to the usual matrix sector breaking of the spin glass mean-field theory.
引用
收藏
页码:3363 / 3382
页数:20
相关论文
共 30 条
[1]   ROUNDING OF 1ST-ORDER PHASE-TRANSITIONS IN SYSTEMS WITH QUENCHED DISORDER [J].
AIZENMAN, M ;
WEHR, J .
PHYSICAL REVIEW LETTERS, 1989, 62 (21) :2503-2506
[2]   THE RANDOM FIELD ISING-MODEL [J].
BELANGER, DP ;
YOUNG, AP .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1991, 100 (1-3) :272-291
[3]   LOWER CRITICAL DIMENSION FOR THE RANDOM-FIELD ISING-MODEL [J].
BRICMONT, J ;
KUPIAINEN, A .
PHYSICAL REVIEW LETTERS, 1987, 59 (16) :1829-1832
[4]   SOME NONPERTURBATIVE CALCULATIONS ON SPIN-GLASSES [J].
CAMPELLONE, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (08) :2149-2158
[5]  
CARACCIOLO S, COMMUNICATION
[6]  
DEDOMINICIS C, 1995, J PHYS I, V5, P987, DOI 10.1051/jp1:1995178
[7]  
ENGEL A, 1985, J PHYS LETT-PARIS, V46, pL409, DOI 10.1051/jphyslet:01985004609040900
[8]  
ENGEL A, 1993, REPLICA SYMMETRY BRE
[9]   THERMAL FLUCTUATIONS, QUENCHED DISORDER, PHASE-TRANSITIONS, AND TRANSPORT IN TYPE-II SUPERCONDUCTORS [J].
FISHER, DS ;
FISHER, MPA ;
HUSE, DA .
PHYSICAL REVIEW B, 1991, 43 (01) :130-159
[10]   KINETIC ROUGHENING PHENOMENA, STOCHASTIC GROWTH DIRECTED POLYMERS AND ALL THAT - ASPECTS OF MULTIDISCIPLINARY STATISTICAL-MECHANICS [J].
HALPINHEALY, T ;
ZHANG, YC .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1995, 254 (4-6) :215-415