Anodic Aluminum Oxide Passivation For Silicon Solar Cells

被引:24
作者
Lu, P. H. [1 ]
Wang, K. [1 ]
Lu, Z. [1 ]
Lennon, A. J. [1 ]
Wenham, S. R. [1 ]
机构
[1] Univ New S Wales, Sch Photovolta & Renewable Energy Engn, Sydney, NSW 2052, Australia
来源
IEEE JOURNAL OF PHOTOVOLTAICS | 2013年 / 3卷 / 01期
基金
澳大利亚研究理事会;
关键词
Anodic aluminum oxide (AAO); local metal contacts; nanoscale; passivation; silicon solar cell; stored charge; SURFACE RECOMBINATION; HYDROGEN EMBRITTLEMENT; NITRIDE; LAYER; EFFICIENCY; FILMS;
D O I
10.1109/JPHOTOV.2012.2214377
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The requirement to form localized rear metal contact regions for higher silicon solar cell efficiencies places demand on patterning techniques in terms of the small size of the openings and the ability to perform the patterning at commercial wafer processing rates. We suggest here the possibility of using a self-patterning approach which offers the potential of enhanced surface passivation and nanoscale patterning achieved using a single electrochemical anodization process. It is shown that when nanoporous anodic aluminum oxide (AAO) layers are formed by anodizing an aluminum layer over an intervening SiO2 or SiNx dielectric layer, the implied open-circuit voltages of p-type silicon test structures can be increased by an average of 40 and 47 mV, respectively. Capacitance-voltage measurements show that these passivating AAO dielectric stack layers store positive charges, which differs from what is observed for Al2O3 layers deposited by plasma-enhanced chemical vapor deposition or atomic layer deposition. Furthermore, we show that the magnitude of the stored charge in the dielectric stacks depends on the anodization conditions, highlighting the possibility of controlling the charge storage properties of these layers for specific cell requirements. Although the passivating properties of the anodized aluminum layer appear to be strongly influenced by charge effects, it is also possible that hydrogenation effects may play a role as has been previously observed for other electrochemical processes, such as metal plating.
引用
收藏
页码:143 / 151
页数:9
相关论文
共 36 条
[1]  
Aberle A. G., 1994, Progress in Photovoltaics: Research and Applications, V2, P265, DOI 10.1002/pip.4670020402
[2]  
Aberle A.G., 1999, Crystalline silicon solar cells : advanced surface passivation and analysis / Armin G. Aberle
[3]   Very low surface recombination velocities on p-type silicon wafers passivated with a dielectric with fixed negative charge [J].
Agostinelli, G. ;
Delabie, A. ;
Vitanov, P. ;
Alexieva, Z. ;
Dekkers, H. F. W. ;
De Wolf, S. ;
Beaucarne, G. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2006, 90 (18-19) :3438-3443
[4]   Modelling the PERC structure for industrial quality silicon [J].
Catchpole, KR ;
Blakers, AW .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2002, 73 (02) :189-202
[5]  
Dauwe S, 2003, WORL CON PHOTOVOLT E, P1395
[6]   Fixed charge density in silicon nitride films on crystalline silicon surfaces under illumination [J].
Dauwe, S ;
Schmidt, J ;
Metz, A ;
Hezel, R .
CONFERENCE RECORD OF THE TWENTY-NINTH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE 2002, 2002, :162-165
[7]   Experimental evidence of parasitic shunting in silicon nitride rear surface passivated solar cells [J].
Dauwe, S ;
Mittelstädt, L ;
Metz, A ;
Hezel, R .
PROGRESS IN PHOTOVOLTAICS, 2002, 10 (04) :271-278
[8]   Towards 20% efficient large-area screen-printed rear-passivated silicon solar cells [J].
Dullweber, Thorsten ;
Gatz, Sebastian ;
Hannebauer, Helge ;
Falcon, Tom ;
Hesse, Rene ;
Schmidt, Jan ;
Brendel, Rolf .
PROGRESS IN PHOTOVOLTAICS, 2012, 20 (06) :630-638
[9]   19.4%-efficient large-area fully screen-printed silicon solar cells [J].
Gatz, Sebastian ;
Hannebauer, Helge ;
Hesse, Rene ;
Werner, Florian ;
Schmidt, Arne ;
Dullweber, Thorsten ;
Schmidt, Jan ;
Bothe, Karsten ;
Brendel, Rolf .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2011, 5 (04) :147-149
[10]  
Hallam B., 2009, P 24 EUR PHOT SOL EN, P1548