Relaxation of disordered magnets in the Griffiths' regime

被引:34
作者
Cesi, F
Maes, C
Martinelli, F
机构
[1] KATHOLIEKE UNIV LEUVEN, INST THEORET FYS, B-3001 LOUVAIN, BELGIUM
[2] ONDERZOEKSLEIDER NFWO, LOUVAIN, BELGIUM
[3] UNIV AQUILA, DIPARTIMENTO ENERGET, I-67100 LAQUILA, ITALY
关键词
D O I
10.1007/s002200050160
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the relaxation to equilibrium of discrete spin systems with random finite range (not necessarily ferromagnetic) interactions in the Griffiths' regime. We prove that the speed of convergence to the unique reversible Gibbs measure is almost surely faster than any stretched exponential, at least if the probability distribution of the interaction decays faster than exponential (e.g. Gaussian). Furthermore, if the interaction is uniformly bounded, the average over the disorder of the time-autocorrelation function, goes to equilibrium as exp[-k(log t)(d/(d-1))] (in d > 1), in agreement with previous results obtained for the dilute Ising model.
引用
收藏
页码:135 / 173
页数:39
相关论文
共 39 条
[1]   THE PHASE-BOUNDARY IN DILUTE AND RANDOM ISING AND POTTS FERROMAGNETS [J].
AIZENMAN, M ;
CHAYES, JT ;
CHAYES, L ;
NEWMAN, CM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (05) :L313-L318
[2]  
BASSALYGO L, 1986, THEOR PROBAB APPL, V31, P572
[3]   UPPER AND LOWER BOUNDS ON DYNAMIC CORRELATIONS IN THE GRIFFITHS PHASE [J].
BRAY, AJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (03) :L81-L85
[4]   DYNAMICS OF DILUTE MAGNETS ABOVE TC [J].
BRAY, AJ .
PHYSICAL REVIEW LETTERS, 1988, 60 (08) :720-723
[5]   On the two-dimensional stochastic Ising model in the phase coexistence region near the critical point [J].
Cesi, F ;
Guadagni, G ;
Martinelli, F ;
Schonmann, RH .
JOURNAL OF STATISTICAL PHYSICS, 1996, 85 (1-2) :55-102
[6]   On the layering transition of an SOS surface interacting with a wall .1. Equilibrium results [J].
Cesi, F ;
Martinelli, F .
JOURNAL OF STATISTICAL PHYSICS, 1996, 82 (3-4) :823-913
[7]  
CESI F, UNPUB COMMUN MATH PH
[8]  
DEUSCHEL JD, 1989, SERIES PURE APPL MAT, V137
[9]   GRIFFITHS SINGULARITIES IN THE DYNAMICS OF DISORDERED ISING-MODELS [J].
DHAR, D ;
RANDERIA, M ;
SETHNA, JP .
EUROPHYSICS LETTERS, 1988, 5 (06) :485-490
[10]  
Dobrushin R. L., 1985, Statistical Physics and Dynamical Systems: Rigorous Results, P347