Why does photosynthesis decrease with needle age in Pinus pinaster?

被引:95
作者
Warren, CR [1 ]
机构
[1] Univ Melbourne, Sch Forest & Ecosyst Sci, Creswick, Vic 3363, Australia
来源
TREES-STRUCTURE AND FUNCTION | 2006年 / 20卷 / 02期
基金
澳大利亚研究理事会;
关键词
age; photosynthesis; nitrogen; internal resistance; mesophyll conductance; transfer conductance; V (cmax); J (max); Rubisco;
D O I
10.1007/s00468-005-0021-7
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Rates of photosynthesis vary with foliage age and typically decline from full-leaf expansion until senescence occurs. This age-related decline in photosynthesis is especially important in species that retain foliage for several years, yet it is not known whether the internal conductance to CO2 movement (g(i)) plays any role. More generally, g(i) has been measured in only a few conifers and has never been measured in leaves or needles older than 1 year. The effect of ageing on g(i) was investigated in Pinus pinaster, a species that retains needle for 4 or more years. Measurements were made in autumn when trees were not water limited and after leaf expansion was complete. Rates of net photosynthesis decreased with needle age, from 8 mu mol m(-2) s(-1) in fully expanded current-year needles to 4.4 mu mol m(-2) s(-1) in 3-year-old needles. The relative limitation due to internal conductance (0.24-0.35 out of 1) was in all cases larger than that due to stomatal conductance (0.13-0.19 out of 1). Internal conductance and stomatal conductance approximately scaled with rates of photosynthesis. Hence, there was no difference among year-classes in the relative limitations posed by internal and stomatal conductance or evidence that they cause the age-related decline in photosynthesis. There was little evidence that the age-related decline in photosynthesis was due to decreases in contents of N or Rubisco. The decrease in rates of photosynthesis from current-year to older needles was instead related to a twofold decrease in rates of photosynthesis per unit nitrogen and V-cmax/Rubisco (i.e., in vivo specific activity).
引用
收藏
页码:157 / 164
页数:8
相关论文
共 39 条
[1]   Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo [J].
Bernacchi, CJ ;
Portis, AR ;
Nakano, H ;
von Caemmerer, S ;
Long, SP .
PLANT PHYSIOLOGY, 2002, 130 (04) :1992-1998
[2]   OXYGEN-EXCHANGE IN LEAVES IN THE LIGHT [J].
CANVIN, DT ;
BERRY, JA ;
BADGER, MR ;
FOCK, H ;
OSMOND, CB .
PLANT PHYSIOLOGY, 1980, 66 (02) :302-307
[3]   The use of low [CO2] to estimate diffusional and non-diffusional limitations of photosynthetic capacity of salt-stressed olive saplings [J].
Centritto, M ;
Loreto, F ;
Chartzoulakis, K .
PLANT CELL AND ENVIRONMENT, 2003, 26 (04) :585-594
[4]   The relative limitation of photosynthesis by mesophyll conductance in co-occurring species in a temperate rainforest dominated by the conifer Dacrydium cupressinum [J].
De Lucia, EH ;
Whitehead, D ;
Clearwater, MJ .
FUNCTIONAL PLANT BIOLOGY, 2003, 30 (12) :1197-1204
[5]   LIMITATION OF NET CO2 ASSIMILATION RATE BY INTERNAL RESISTANCES TO CO2 TRANSFER IN THE LEAVES OF 2 TREE SPECIES (FAGUS-SYLVATICA L AND CASTANEA-SATIVA MILL) [J].
EPRON, D ;
GODARD, D ;
CORNIC, G ;
GENTY, B .
PLANT CELL AND ENVIRONMENT, 1995, 18 (01) :43-51
[6]   On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis model [J].
Ethier, GJ ;
Livingston, NJ .
PLANT CELL AND ENVIRONMENT, 2004, 27 (02) :137-153
[7]   THE RELATIONSHIP BETWEEN CO2 TRANSFER CONDUCTANCE AND LEAF ANATOMY IN TRANSGENIC TOBACCO WITH A REDUCED CONTENT OF RUBISCO [J].
EVANS, JR ;
VONCAEMMERER, S ;
SETCHELL, BA ;
HUDSON, GS .
AUSTRALIAN JOURNAL OF PLANT PHYSIOLOGY, 1994, 21 (04) :475-495
[8]   A BIOCHEMICAL-MODEL OF PHOTOSYNTHETIC CO2 ASSIMILATION IN LEAVES OF C-3 SPECIES [J].
FARQUHAR, GD ;
CAEMMERER, SV ;
BERRY, JA .
PLANTA, 1980, 149 (01) :78-90
[9]   STOMATAL CONDUCTANCE AND PHOTOSYNTHESIS [J].
FARQUHAR, GD ;
SHARKEY, TD .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1982, 33 :317-345
[10]   ALLOCATING LEAF NITROGEN FOR THE MAXIMIZATION OF CARBON GAIN - LEAF AGE AS A CONTROL ON THE ALLOCATION PROGRAM [J].
FIELD, C .
OECOLOGIA, 1983, 56 (2-3) :341-347