Detecting Differential Expression in RNA-sequence Data Using Quasi-likelihood with Shrunken Dispersion Estimates

被引:213
作者
Lund, Steven P.
Nettleton, Dan [2 ]
McCarthy, Davis J. [1 ]
Smyth, Gordon K.
机构
[1] Univ Oxford, Oxford OX1 2JD, England
[2] Iowa State Univ, Dept Stat, Ames, IA 50011 USA
基金
美国国家科学基金会; 英国医学研究理事会;
关键词
differential expression; quasi-likelihood; RNA-seq; SEQ;
D O I
10.1515/1544-6115.1826
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Next generation sequencing technology provides a powerful tool for measuring gene expression (mRNA) levels in the form of RNA-sequence data. Method development for identifying differentially expressed (DE) genes from RNA-seq data, which frequently includes many low-count integers and can exhibit severe overdispersion relative to Poisson or binomial distributions, is a popular area of ongoing research. Here we present quasi-likelihood methods with shrunken dispersion estimates based on an adaptation of Smyth's (2004) approach to estimating gene-specific error variances for microarray data. Our suggested methods are computationally simple, analogous to ANOVA and compare favorably versus competing methods in detecting DE genes and estimating false discovery rates across a variety of simulations based on real data.
引用
收藏
页数:44
相关论文
共 21 条
[1]  
[Anonymous], 2011, R: A Language and Environment for Statistical Computing
[2]  
[Anonymous], 1983, Monographs on Statistics and Applied Probability
[3]  
[Anonymous], 2010, GENOME BIOL
[4]   A Two-Stage Poisson Model for Testing RNA-Seq Data [J].
Auer, Paul L. ;
Doerge, Rebecca W. .
STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2011, 10 (01)
[5]   Sex-specific and lineage-specific alternative splicing in primates [J].
Blekhman, Ran ;
Marioni, John C. ;
Zumbo, Paul ;
Stephens, Matthew ;
Gilad, Yoav .
GENOME RESEARCH, 2010, 20 (02) :180-189
[6]   Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments [J].
Bullard, James H. ;
Purdom, Elizabeth ;
Hansen, Kasper D. ;
Dudoit, Sandrine .
BMC BIOINFORMATICS, 2010, 11
[7]   GENE-Counter: A Computational Pipeline for the Analysis of RNA-Seq Data for Gene Expression Differences [J].
Cumbie, Jason S. ;
Kimbrel, Jeffrey A. ;
Di, Yanming ;
Schafer, Daniel W. ;
Wilhelm, Larry J. ;
Fox, Samuel E. ;
Sullivan, Christopher M. ;
Curzon, Aron D. ;
Carrington, James C. ;
Mockler, Todd C. ;
Chang, Jeff H. .
PLOS ONE, 2011, 6 (10)
[8]   The NBP Negative Binomial Model for Assessing Differential Gene Expression from RNA-Seq [J].
Di, Yanming ;
Schafer, Daniel W. ;
Cumbie, Jason S. ;
Chang, Jeff H. .
STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2011, 10 (01)
[9]  
Lu J., 2005, BIOINFORMATICS, V6
[10]   RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays [J].
Marioni, John C. ;
Mason, Christopher E. ;
Mane, Shrikant M. ;
Stephens, Matthew ;
Gilad, Yoav .
GENOME RESEARCH, 2008, 18 (09) :1509-1517