Gene targeting in Arabidopsis

被引:99
作者
Hanin, M
Volrath, S
Bogucki, A
Briker, M
Ward, E
Paszkowski, J
机构
[1] Friedrich Miescher Inst, CH-4058 Basel, Switzerland
[2] Syngenta RTP, Res Triangle Pk, NC 27709 USA
关键词
homologous recombination; gene targeting; protoprophyrinogen oxidase (PPO);
D O I
10.1046/j.1365-313x.2001.01183.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Precise modification by gene targeting (GT) provides an important tool for studies of gene function in vivo. Although routine with many organisms, only isolated examples of GT events have been reported for flowering plants. These were at low frequencies precluding reliable estimation of targeting efficiency and evaluation of GT mechanisms. Here we present an unambiguous and straightforward system for detection of GT events in Arabidopsis using an endogenous nuclear gene encoding protoporphyrinogen oxidase (PPO), involved in chlorophyll and heme syntheses. Inhibition of PPO by the herbicide Butafenacil results in rapid plant death. However the combination of two particular mutations renders PPO highly resistant to Butafenacil. We exploited this feature for selection of GT events by introducing the mutations into the PPO gene by homologous recombination. We, have estimated the basal GT frequency to be 2.4 X 10(-3). Approximately one-third of events were true GT (TGT) leading to the anticipated modification of the chromosomal PPO copy. The remaining events could be classified as ectopic GT (EGT) arising by modification of vector DNA by the chromosomal template: and its random integration into the Arabidopsis genome. Thus the TGT frequency in our experimental setup is 0.72 X 10(-3). In view of the high efficiency of Arabidopsis transformation, GT experiments of a reasonable size followed by a PCR screen for GT events should also allow for modification of non-selectable targets. Moreover, the system presented here should contribute significantly to future improvement of GT technology in plants.
引用
收藏
页码:671 / 677
页数:7
相关论文
共 39 条
  • [1] [Anonymous], SCIENCE
  • [2] Beale S.I., 1990, BIOSYNTHESIS HEME CH, P287
  • [3] BECHTOLD N, 1993, CR ACAD SCI III-VIE, V316, P1194
  • [4] A tool for functional plant genomics:: Chimeric RNA/DNA oligonucleotides cause in vivo gene-specific mutations
    Beetham, PR
    Kipp, PB
    Sawycky, XL
    Arntzen, CJ
    May, GD
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (15) : 8774 - 8778
  • [5] Bhatt AM, 1998, PLANT CELL, V10, P427, DOI 10.1105/tpc.10.3.427
  • [6] ALTERING THE GENOME BY HOMOLOGOUS RECOMBINATION
    CAPECCHI, MR
    [J]. SCIENCE, 1989, 244 (4910) : 1288 - 1292
  • [7] GENOMIC SEQUENCING
    CHURCH, GM
    GILBERT, W
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1984, 81 (07): : 1991 - 1995
  • [8] DEWITT N, 2000, NAT BIOTECHNOL, V18, P481
  • [9] PROTOPORPHYRINOGEN OXIDASE-INHIBITING HERBICIDES
    DUKE, SO
    LYDON, J
    BECERRIL, JM
    SHERMAN, TD
    LEHNEN, LP
    MATSUMOTO, H
    [J]. WEED SCIENCE, 1991, 39 (03) : 465 - 473
  • [10] Non-homologous DNA end joining in plant cells is associated with deletions and filler DNA insertions
    Gorbunova, V
    Levy, AA
    [J]. NUCLEIC ACIDS RESEARCH, 1997, 25 (22) : 4650 - 4657