160 h of chemical-looping combustion in a 10 kW reactor system with a NiO-based oxygen carrier

被引:172
作者
Linderholm, Carl [1 ]
Abad, Alberto [2 ]
Mattisson, Tobias [1 ]
Lynyfelt, Anders [1 ]
机构
[1] Chalmers Univ Technol, Environm & Energy Dept, S-41296 Gothenburg, Sweden
[2] CSIC, Inst Carboquim, Environm & Energy Dept, Zaragoza 50018, Spain
关键词
Chemical-looping combustion; Oxygen carrier; Fluidized bed;
D O I
10.1016/j.ijggc.2008.02.006
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Chemical-looping combustion, CLC, is a technology with inherent separation of the greenhouse gas CO2. The technique uses an oxygen carrier made up of particulate metal oxide to transfer oxygen from combustion air to fuel. In this work, an oxygen carrier consisting of 60% NiO and 40% NiAl2O4 was used in a 10 kW CLC reactor system for 160 h of operation with fuel. The first 3 h of fuel operation excepted, the test series was accomplished with the same batch of oxygen carrier particles. The fuel used in the experiments was natural gas, and a fuel conversion to CO2 of approximately 99% was accomplished. Combustion conditions were very stable during the test period, except for the operation at sub-stoichiometric conditions. It was shown that the methane fraction in the fuel reactor exit gas was dependent upon the rate of solids circulation, with higher circulation leading to more unconverted methane. The carbon monoxide fraction was found to follow the thermodynamical equilibrium for all investigated fuel reactor temperatures, 660-950 degrees C. Thermal analysis of the fuel reactor at stable conditions enabled calculation of the particle circulation which was found to be approximately 4 kg/s, MW. The loss of fines, i.e. the amount of elutriated oxygen carrier particles with diameter <45 mu m, decreased during the entire test period. After 160 h of operation the fractional loss of fines was 0.00022 h(-1), corresponding to a particle life time of 4500 h. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:520 / 530
页数:11
相关论文
共 33 条
[1]   The use of iron oxide as oxygen carrier in a chemical-looping reactor [J].
Abad, A. ;
Mattisson, T. ;
Lyngfelt, A. ;
Johansson, M. .
FUEL, 2007, 86 (7-8) :1021-1035
[2]   Chemical-looping combustion in a 300 W continuously operating reactor system using a manganese-based oxygen carrier [J].
Abad, A ;
Mattisson, T ;
Lyngfelt, A ;
Rydén, M .
FUEL, 2006, 85 (09) :1174-1185
[3]   Mapping of the range of operational conditions for Cu-, Fe-, and Ni-based oxygen carriers in chemical-looping combustion [J].
Abad, Alberto ;
Adanez, Juan ;
Garcia-Labiano, Francisco ;
de Diego, Luis F. ;
Gayan, Pilar ;
Celaya, Javier .
CHEMICAL ENGINEERING SCIENCE, 2007, 62 (1-2) :533-549
[4]   Nickel-copper oxygen carriers to reach zero CO and H2 emissions in chemical-looping combustion [J].
Adánez, J ;
García-Labiano, F ;
de Diego, LF ;
Gayán, P ;
Celaya, J ;
Abad, A .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2006, 45 (08) :2617-2625
[5]   Selection of oxygen carriers for chemical-looping combustion [J].
Adánez, J ;
de Diego, LF ;
García-Labiano, F ;
Gayán, P ;
Abad, A ;
Palacios, JM .
ENERGY & FUELS, 2004, 18 (02) :371-377
[6]   Chemical looping combustion in a 10 kWth prototype using a CuO/Al2O3 oxygen carrier:: Effect of operating conditions on methane combustion [J].
Adanez, Juan ;
Gayan, Pilar ;
Celaya, Javier ;
de Diego, Luis F. ;
Garcia-Labiano, Francisco ;
Abad, Alberto .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2006, 45 (17) :6075-6080
[7]  
[Anonymous], 2006, INT SEM CARB SEQ CLI
[8]  
[Anonymous], 7 INT C GREENH GAS C
[9]   Comparison of iron-, nickel-, copper- and manganese-based oxygen carriers for chemical-looping combustion [J].
Cho, P ;
Mattisson, T ;
Lyngfelt, A .
FUEL, 2004, 83 (09) :1215-1225
[10]  
CHO P, 2002, 7 INT C CIRC FLUID B, P599