First-principles study of the H2 interaction with transition metal (Ti, V, Ni) doped Mg(0001) surface: Implications for H-storage materials

被引:36
作者
Banerjee, S. [1 ]
Pillai, C. G. S. [1 ]
Majumder, C. [1 ]
机构
[1] BARC, Div Chem, Bombay 85, Maharashtra, India
关键词
ab initio calculations; chemisorption; density functional theory; diffusion; dissociation; hydrogen neutral molecules; hydrogen storage; magnesium; nickel; pseudopotential methods; titanium; vanadium;
D O I
10.1063/1.3000673
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Using first-principles calculations we have investigated the interaction of hydrogen molecules with clean and M (Ti, V, and Ni) doped Mg(0001) surfaces. The calculations have been carried out using plane-wave-based pseudopotential method under the formalism of density functional theory. First we have calculated the stability of the M atoms on the Mg surface. On the basis of the energetic criteria, we found that all these M atoms prefer to substitute one of the Mg atoms from the second layer than the top surface atom. In the second step we have studied the interaction of a hydrogen molecule with the clean and doped Mg surface. The results show that for M atoms at the surface, the hydrogen molecule undergoes spontaneous dissociative chemisorptions. However, for M atoms in the second layer, it requires to cross an activation barrier to undergo molecular dissociation. Furthermore, to understand the mobility of hydrogen atoms on the surface we have calculated the diffusion energy barriers for the M doped surface. Contrary to the molecular dissociation behavior, it is found that the mobility of hydrogen atoms on the surface is easier if the M atoms are placed in the second layer in comparison to that in the top surface layer. It is believed that the results of the present study provide useful information based on the first-principles calculations for synthesizing Mg based materials for hydrogen storage with optimal performance.
引用
收藏
页数:6
相关论文
共 37 条
[1]   Water splitting goes au naturel [J].
Alper, J .
SCIENCE, 2003, 299 (5613) :1686-1687
[2]   Dissociation and sticking of H2 on Mg(0001), Ti(0001) and La(0001) surfaces [J].
Arboleda, NB ;
Kasai, H ;
Nobuhara, K ;
Diño, WA ;
Nakanishi, H .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2004, 73 (03) :745-748
[3]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[4]   Catalytic mechanism of transition-metal compounds on Mg hydrogen sorption reaction [J].
Barkhordarian, Gagik ;
Klassen, Thomas ;
Bormann, Rudiger .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (22) :11020-11024
[5]   Catalytic activity of oxides and halides on hydrogen storage of MgH2 [J].
Bhat, V. V. ;
Rougier, A. ;
Aymard, L. ;
Darok, X. ;
Nazri, G. ;
Tarascon, J. M. .
JOURNAL OF POWER SOURCES, 2006, 159 (01) :107-110
[6]  
BIRD DM, 1993, CHEM PHYS LETT, V212, P257
[7]   Thermodynamic investigation of the magnesium-hydrogen system [J].
Bogdanovic, B ;
Bohmhammel, K ;
Christ, B ;
Reiser, A ;
Schlichte, K ;
Vehlen, R ;
Wolf, U .
JOURNAL OF ALLOYS AND COMPOUNDS, 1999, 282 (1-2) :84-92
[8]   Hydrogenation of transition element additives (Ti, V) during ball milling of magnesium hydride [J].
Charbonnier, J ;
de Rango, P ;
Fruchart, D ;
Miraglia, S ;
Pontonnier, L ;
Rivoirard, S ;
Skryabina, N ;
Vulliet, P .
JOURNAL OF ALLOYS AND COMPOUNDS, 2004, 383 (1-2) :205-208
[9]   Interaction of hydrogen with metal nitrides and imides [J].
Chen, P ;
Xiong, ZT ;
Luo, JZ ;
Lin, JY ;
Tan, KL .
NATURE, 2002, 420 (6913) :302-304
[10]   Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water [J].
Cortright, RD ;
Davda, RR ;
Dumesic, JA .
NATURE, 2002, 418 (6901) :964-967