Use of neural networks for prediction of vapor/liquid equilibrium K values for light-hydrocarbon mixtures

被引:11
作者
Habiballah, WA [1 ]
Startzman, RA [1 ]
Barrufet, MA [1 ]
机构
[1] TEXAS A&M UNIV, DEPT PETR ENGN, COLLEGE STN, TX USA
来源
SPE RESERVOIR ENGINEERING | 1996年 / 11卷 / 02期
关键词
D O I
10.2118/28597-PA
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Equilibrium ratios play a fundamental role in the understanding of phase behavior of hydrocarbon mixtures. They are important in pre-dieting compositional changes under varying temperature and pressure in reservoirs, surface separators, and production and transportation facilities. In particular, they are critical for reliable and successful compositional reservoir simulation. This paper presents a new approach for predicting K values with neural networks (NN's). The method is applied to binary and multicomponent mixtures, and K-value prediction accuracy is on the order of the traditional methods. However, computing speed is significantly faster.
引用
收藏
页码:121 / 126
页数:6
相关论文
共 14 条
[1]  
ACCARAIN P, 1993, PET ENG INT FEB, P39
[2]  
AHMED T, HYDROCARBON PHASE BE
[3]  
ALKAABI AU, 1990 SPE PETR COMP C
[4]  
HABIBALLAH WA, 1993, IN SITU, V17, P227
[5]  
Hecht-Nielsen R., 1989, IJCNN: International Joint Conference on Neural Networks (Cat. No.89CH2765-6), P593, DOI 10.1109/IJCNN.1989.118638
[6]  
KNAPP H, 1982, VAPOR LIQUID EQUILIB, P6
[7]  
MCCAIN WD, 1990, PROPERTIES PETROLEUM, P396
[8]   A SCALED CONJUGATE-GRADIENT ALGORITHM FOR FAST SUPERVISED LEARNING [J].
MOLLER, MF .
NEURAL NETWORKS, 1993, 6 (04) :525-533
[9]  
PAO Y, 1989, ADAPTIVE PATTERN REC, P113
[10]  
Rumelhart D.E., 1985, Tech. rep., DOI [DOI 10.7551/MITPRESS/5236.001.0001, 10.1016/b978-1-4832-1446-7.50035-2]