Background: Modular polyketide synthases (PKSs), such as 6-deoxyerythronolide B synthase (DEBS), are large multifunctional enzymes that catalyze the biosynthesis of structurally complex and medically important natural products. Active sites within these assemblies are organized into 'modules: such that each module catalyzes the stereospecific addition of a new monomer onto a growing polyketide chain and also sets the reduction level of the beta-carbon atom of the resulting intermediate. The core of each module is made up of a 'reductive segment: which includes all, some, or none of a set of ketoreductase (KR), dehydratase, and enoylreductase domains, in addition to a large interdomain region which lacks overt function but may contribute to structural stability and inter-domain dynamics within modules. The highly conserved organization of reductive segments within modules suggests that they might be able to function in unnatural contexts to generate novel organic molecules. Results: To investigate domain substitution as a method for altering PKS function, a chimeric enzyme was engineered, Using a bimodular derivative of DEBS (DEBS1+TE), the reductive segment of module 2, which includes a functional KR, was replaced with its homolog from module 3 of DEBS, which contains a (naturally occurring) nonfunctional KR. A recombinant strain expressing the chimeric gene produced the predicted ketolactone with a yield (35%) comparable to that of a control strain in which the KR2 domain was retained but mutationally inactivated. Conclusions: These results demonstrate considerable structural tolerance within an important segment found in virtually every PKS module. The domain boundaries defined here could be exploited for the construction of numerous loss-of-function and possibly even gain-of-function mutants within this remarkable family of multifunctional enzymes.