The α3/2 heat kernel coefficient for oblique boundary conditions

被引:26
作者
Dowker, JS [1 ]
Kirsten, K
机构
[1] Univ Manchester, Dept Theoret Phys, Manchester M13 9PL, Lancs, England
[2] Univ Leipzig, Inst Theoret Phys, D-04109 Leipzig, Germany
关键词
D O I
10.1088/0264-9381/16/6/322
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a method for the calculation of the a(3/2) heat kernel coefficient of the heat operator trace for a partial differential operator of Laplace type on a compact Riemannian manifold with oblique boundary conditions. Using special case evaluations, restrictions are put on the general form of the coefficients, which, supplemented by conformal transformation techniques, allows the entire smeared coefficient to be determined.
引用
收藏
页码:1917 / 1936
页数:20
相关论文
共 43 条
[1]   OPEN STRINGS IN BACKGROUND GAUGE-FIELDS [J].
ABOUELSAOOD, A ;
CALLAN, CG ;
NAPPI, CR ;
YOST, SA .
NUCLEAR PHYSICS B, 1987, 280 (04) :599-624
[2]  
[Anonymous], QUANTUM THEORY BLACK
[3]   A COVARIANT TECHNIQUE FOR THE CALCULATION OF THE ONE-LOOP EFFECTIVE ACTION [J].
AVRAMIDI, IG .
NUCLEAR PHYSICS B, 1991, 355 (03) :712-754
[4]   Gauge theories on manifolds with boundary [J].
Avramidi, IG ;
Esposito, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 200 (03) :495-543
[5]   New invariants in the 1-loop divergences on manifolds with boundary [J].
Avramidi, IG ;
Esposito, G .
CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (02) :281-297
[6]   Boundary operators in Euclidean quantum gravity [J].
Avramidi, IG ;
Esposito, G ;
Kamenshchik, AY .
CLASSICAL AND QUANTUM GRAVITY, 1996, 13 (09) :2361-2373
[7]   THE WAVE-FUNCTION AND THE EFFECTIVE ACTION IN QUANTUM COSMOLOGY - COVARIANT LOOP EXPANSION [J].
BARVINSKY, AO .
PHYSICS LETTERS B, 1987, 195 (03) :344-348
[8]   ONE-LOOP QUANTUM COSMOLOGY - ZETA-FUNCTION TECHNIQUE FOR THE HARTLE-HAWKING WAVE-FUNCTION OF THE UNIVERSE [J].
BARVINSKY, AO ;
KAMENSHCHIK, AY ;
KARMAZIN, IP .
ANNALS OF PHYSICS, 1992, 219 (02) :201-242
[9]  
Birrell N.D., 1982, QUANTUM FIELDS CURVE
[10]   Heat kernel coefficients of the Laplace operator on the D-dimensional ball [J].
Bordag, M ;
Elizalde, E ;
Kirsten, K .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (02) :895-916