Functional characterization of the G protein regulator RGS13

被引:46
作者
Johnson, EN [1 ]
Druey, KM [1 ]
机构
[1] NIAID, Mol Signal Transduct Sect, Lab Allerg Dis, NIH, Rockville, MD 20852 USA
关键词
D O I
10.1074/jbc.M200751200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The signaling cascades evoked by G protein-coupled receptors are a predominant mechanism of cellular communication. The regulators of G protein signaling (RGS) comprise a family of proteins that attenuate G protein-mediated signal transduction. Here we report the characterization of RGS13, the smallest member of the RGS family, which has been cloned from human lung. RGS13 has been found most abundantly in human tonsil, followed by thymus, lung, lymph node, and spleen. RGS13 is a GTPase-activating protein for Galpha(i) and Galpha(o) but not Galpha(s). RGS13 binds Galpha(q) in the presence of aluminum magnesium fluoride, suggesting that it bears GTPase-activating protein activity toward Galpha(q). RGS13 blocks MAPK activity induced by Ga-i- or Galpha(q)-coupled receptors. RGS13 also attenuates GTPase-deficient Galpha(q) (Galpha(q)QL) mediated cAMP response element activation but not transcription evoked by constitutively active Galpha(12) or Galpha(13). Surprisingly, RGS13 inhibits cAMP generation elicited by stimulation of the beta(2)-adrenergic receptor. These data suggest that RGS13 may regulate Galpha(i)-, Galpha(q)-, and Galpha(s)-coupled signaling cascades.
引用
收藏
页码:16768 / 16774
页数:7
相关论文
共 37 条
[1]  
Beadling C, 1999, J IMMUNOL, V162, P2677
[2]   GAIP and RGS4 are GTPase-activating proteins for the G(i) subfamily of G protein alpha subunits [J].
Berman, DM ;
Wilkie, TM ;
Gilman, AG .
CELL, 1996, 86 (03) :445-452
[3]   RGS4 binds to membranes through an amphipathic α-helix [J].
Bernstein, LS ;
Grillo, AA ;
Loranger, SS ;
Linder, ME .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (24) :18520-18526
[4]   Cytoplasmic, nuclear, and Golgi localization of RGS proteins - Evidence for N-terminal and RGS domain sequences as intracellular targeting motifs [J].
Chatterjee, TK ;
Fisher, RA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (31) :24013-24021
[5]   A truncated form of RGS3 negatively regulates G protein-coupled receptor stimulation of adenylyl cyclase and phosphoinositide phospholipase C [J].
Chatterjee, TK ;
Eapen, AK ;
Fisher, RA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (24) :15481-15487
[6]   Characterization of a novel mammalian RGS protein that binds to G alpha proteins and inhibits pheromone signaling in yeast [J].
Chen, CH ;
Zheng, B ;
Han, JH ;
Lin, SC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (13) :8679-8685
[7]   Slowed recovery of rod photoresponse in mice lacking the GTPase accelerating protein RGS9-1 [J].
Chen, CK ;
Burns, ME ;
He, W ;
Wensel, TG ;
Baylor, DA ;
Simon, MI .
NATURE, 2000, 403 (6769) :557-560
[8]   RGS-r, a retinal specific RGS protein, binds an intermediate conformation of transducin and enhances recycling [J].
Chen, CK ;
Wieland, T ;
Simon, MI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (23) :12885-12889
[9]   Structure of the rgRGS domain of p115RhoGEF [J].
Chen, Z ;
Wells, CD ;
Sternweis, PC ;
Sprang, SR .
NATURE STRUCTURAL BIOLOGY, 2001, 8 (09) :805-809
[10]   The regulator of G protein signaling family [J].
De Vries, L ;
Zheng, B ;
Fischer, T ;
Elenko, E ;
Farquhar, MG .
ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 2000, 40 :235-271