Origin of Photoluminescence and XAFS Study of (ZnS)1-x(AgInS2)x Nanocrystals

被引:62
作者
Rao, M. Jagadeeswara [1 ]
Shibata, Tomohiro [2 ,3 ,4 ]
Chattopadhyay, Soma [2 ,3 ,4 ]
Nag, Angshuman [1 ]
机构
[1] Indian Inst Sci Educ & Res, Dept Chem, Pune 411008, Maharashtra, India
[2] Argonne Natl Lab, MRCAT, Sect 10, Argonne, IL 60439 USA
[3] IIT, CSRRI, Chicago, IL 60616 USA
[4] IIT, Dept Phys, Adv Mat Grp, Chicago, IL 60616 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2014年 / 5卷 / 01期
关键词
SOLID-SOLUTION NANOPARTICLES; AGINS2; NANOCRYSTALS; FACILE SYNTHESIS; QUANTUM DOTS; TRANSPORT; CDSE; ZNSE; ROD;
D O I
10.1021/jz402443y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Donor-Acceptor transition was previously suggested as a mechanism for luminescence in (ZnS)(1-x)(AgInS2)(x) nanocrystals. Here we show the participation of delocalized valence/conduction band in the luminescence. Two emission pathways are observed: Path-1 involves transition between a delocalized state and a localized state exhibiting higher energy and shorter lifetime (similar to 25 ns) and Path-2 (donor-acceptor) involves two localized defect states exhibiting lower emission energy and longer lifetime (>185 ns). Surprisingly, Path-1 dominates (82% for x = 0.33) for nanocrystals with lower x, in sharp difference with prior assignment. Luminescence peak blue shifts systematically by 0.57 eV with decreasing x because of this large contribution from Path-1. X-ray absorption fine structure (XAFS) study of (ZnS)(1-x)(AgInS2)(x) nanocrystals shows larger AgS4 tetrahedra compared with InS4 tetrahedra with Ag-S and In-S bond lengths 2.52 and 2.45 angstrom respectively, whereas Zn-S bond length is 2.33 angstrom along with the absence of second nearest-neighbor Zn-S-metal correlation.
引用
收藏
页码:167 / 173
页数:7
相关论文
共 41 条
[1]   Strategies for photoluminescence enhancement of AgInS2 quantum dots and their application as bioimaging probes [J].
Chang, Jia-Yaw ;
Wang, Guo-Quan ;
Cheng, Chun-Yi ;
Lin, Wei-Xiang ;
Hsu, Jen-Chieh .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (21) :10609-10618
[2]   Breaking the phonon bottleneck for holes in semiconductor quantum dots [J].
Cooney, Ryan R. ;
Sewall, Samuel L. ;
Anderson, Kevin E. H. ;
Dias, Eva A. ;
Kambhampati, Patanjali .
PHYSICAL REVIEW LETTERS, 2007, 98 (17)
[3]   Simultaneous Rietveld refinement of three phases in the Ag-In-S semiconducting system from X-ray powder diffraction [J].
Delgado, G ;
Mora, AJ ;
Pineda, C ;
Tinoco, T .
MATERIALS RESEARCH BULLETIN, 2001, 36 (13-14) :2507-2517
[4]   Controlled synthesis of AgInS2 nanocrystals and their application in organic-inorganic hybrid photodetectors [J].
Deng, Manjiao ;
Shen, Shuling ;
Wang, Xuewen ;
Zhang, Yejun ;
Xu, Huarui ;
Zhang, Ting ;
Wang, Qiangbin .
CRYSTENGCOMM, 2013, 15 (33) :6443-6447
[5]   Light harvesting and carrier transport in core/barrier/shell semiconductor nanocrystals [J].
Dias, Eva A. ;
Sewall, Samuel L. ;
Kambhampati, Patanjali .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (02) :708-713
[6]   Copper-Diffused AgInS2 Ternary Nanocrystals in Hybrid Bulk-Heterojunction Solar Cells: Near-Infrared Active Nanophotovoltaics [J].
Guchhait, Asim ;
Pal, Amlan J. .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (10) :4181-4189
[7]   Photoluminescence Properties and Its Origin of AgInS2 Quantum Dots with Chalcopyrite Structure [J].
Hamanaka, Yasushi ;
Ogawa, Tetsuya ;
Tsuzuki, Masakazu ;
Kuzuya, Toshihiro .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (05) :1786-1792
[8]   Ultranarrow and Widely Tunable Mn2+-Induced Photoluminescence from Single Mn-Doped Nanocrystals of ZnS-CdS Alloys [J].
Hazarika, Abhijit ;
Layek, Arunasish ;
De, Suman ;
Nag, Angshuman ;
Debnath, Saikat ;
Mahadevan, Priya ;
Chowdhury, Arindam ;
Sarma, D. D. .
PHYSICAL REVIEW LETTERS, 2013, 110 (26)
[9]   Electronic structure of Ag2S, band calculation and photoelectron spectroscopy [J].
Kashida, S ;
Watanabe, N ;
Hasegawa, T ;
Iida, H ;
Mori, M ;
Savrasov, S .
SOLID STATE IONICS, 2003, 158 (1-2) :167-175
[10]  
Korningsberger D. C., 1988, XRAY ABSORPTION PRIN