Effect of thermophysical properties models on the predicting of the convective heat transfer coefficient for low concentration nanofluid

被引:233
作者
Duangthongsuk, Weerapun [1 ]
Wongwises, Somchai [1 ]
机构
[1] King Mongkuts Univ Technol Thonburi, Dept Mech Engn, Fluid Mech Thermal Engn & Multiphase Flow Res Lab, Bangkok 10140, Thailand
关键词
Nanofluids; Convective heat transfer Coefficient; Thermophysical properties;
D O I
10.1016/j.icheatmasstransfer.2008.07.015
中图分类号
O414.1 [热力学];
学科分类号
摘要
The term of nanofluid refers to a solid-liquid mixture with a continuous phase which is a nanometer sized nanoparticle dispersed in conventional base fluids. In order to study the heat transfer behavior of the nanofluids, precise values of thermal and physical properties such as specific heat, viscosity and thermal conductivity of the nanofluids are required. There are a few well-known correlations for predicting the thermal and physical properties of nanofluids which are often cited by researchers to calculate the convective heat transfer behaviors of the nanufluids. Each researcher has used different models of the thermophysical properties in their works. This article aims to summarize the various models for predicting the thermophysical properties of nanofluids which have been commonly cited by a number of researchers and use them to calculate the experimental convective heat transfer coefficient of the nanofluid flowing in a double-tube counter flow heat exchanger. The effects of these models on the predicted value of the convective heat transfer of nanofluid with low nanoparticle concentration are discussed in detail. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1320 / 1326
页数:7
相关论文
共 22 条
[1]   An investigation of heat and mass transfer between air and desiccant film in an inclined parallel and counter flow channels [J].
Ali, A ;
Vafai, K .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2004, 47 (8-9) :1745-1760
[2]   Analysis of heat and mass transfer between air and falling film in a cross flow configuration [J].
Ali, A ;
Vafai, K ;
Khaled, ARA .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2004, 47 (04) :743-755
[3]   EFFECT OF BROWNIAN-MOTION ON BULK STRESS IN A SUSPENSION OF SPHERICAL-PARTICLES [J].
BATCHELOR, GK .
JOURNAL OF FLUID MECHANICS, 1977, 83 (NOV) :97-117
[4]   Effect of uncertainties in physical properties on forced convection heat transfer with nanofluids [J].
Ben Mansour, Ridha ;
Galanis, Nicolas ;
Nguyen, Cong Tam .
APPLIED THERMAL ENGINEERING, 2007, 27 (01) :240-249
[5]   THE VISCOSITY OF CONCENTRATED SUSPENSIONS AND SOLUTIONS [J].
BRINKMAN, HC .
JOURNAL OF CHEMICAL PHYSICS, 1952, 20 (04) :571-571
[6]   Experimental microchannel heat sink performance studies using nanofluids [J].
Chein, Reiyu ;
Chuang, Jason .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2007, 46 (01) :57-66
[7]   A critical review of convective heat transfer of nanofluids [J].
Daungthongsuk, Weerapun ;
Wongwises, Somchai .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2007, 11 (05) :797-817
[8]  
Dittus F.W., 1930, University of California Publications in Engineering, V2, P443, DOI [10.1016/0735-1933(85)90003-X, DOI 10.1016/0735-1933(85)90003-X]
[9]  
Drew D.A., 1999, APPL MATH SCI, P105
[10]   THERMAL CONDUCTIVITY OF HETEROGENEOUS 2-COMPONENT SYSTEMS [J].
HAMILTON, RL ;
CROSSER, OK .
INDUSTRIAL & ENGINEERING CHEMISTRY FUNDAMENTALS, 1962, 1 (03) :187-&