Quantum mechanical tunneling in methylamine dehydrogenase (vol 347, pg 512, 2001)

被引:50
作者
Alhambra, C
Sánchez, ML
Corchado, JC
Gao, J
Truhlar, DG
机构
[1] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Inst Supercomp, Minneapolis, MN 55455 USA
[3] Univ Extremadura, Dept Quim Fis, E-06071 Badajoz, Spain
关键词
D O I
10.1016/S0009-2614(02)00057-X
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report a calculation for a trideuteration kinetic isotope effect (KIE) for the proton transfer step in the oxidation of methylamine by the quinoprotein methylamine dehydrogenase (MADH). The potential field includes 11025 atoms. and the dynamics are based on a quantum mechanical/molecular mechanical (QM/MM) dynamics simulation and ensemble-averaged canonical variational transition state theory with small-curvature multidimensional tunneling contributions, About 1% of the reaction occurs by overbarrier processes. with the rest due to tunneling. We compute a KIE of 18.3, in good accord with experiment (17.2), but the calculated KIE is reduced to 5.9 when we omit tunneling. This provides the most striking evidence yet for the contribution of tunneling processes to enzymatic reactions at physiological temperatures.
引用
收藏
页码:388 / 394
页数:7
相关论文
共 36 条
[1]   Canonical variational theory for enzyme kinetics with the protein mean force and multidimensional quantum mechanical tunneling dynamics.: Theory and application to liver alcohol dehydrogenase [J].
Alhambra, C ;
Corchado, J ;
Sánchez, ML ;
Garcia-Viloca, M ;
Gao, J ;
Truhlar, DG .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (45) :11326-11340
[2]   Quantum mechanical dynamical effects in an enzyme-catalyzed proton transfer reaction [J].
Alhambra, C ;
Gao, JL ;
Corchado, JC ;
Villà, J ;
Truhlar, DG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (10) :2253-2258
[3]   Quantum mechanical tunneling in methylamine dehydrogenase [J].
Alhambra, C ;
Sánchez, ML ;
Corchado, J ;
Gao, JL ;
Truhlar, DG .
CHEMICAL PHYSICS LETTERS, 2001, 347 (4-6) :512-518
[4]   Quantum dynamics of hydride transfer in enzyme catalysis [J].
Alhambra, C ;
Corchado, JC ;
Sánchez, ML ;
Gao, JL ;
Truhlar, DG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (34) :8197-8203
[5]  
ALHAMBRA C, 2001, CHARMMRATE
[6]   The generalized hybrid orbital method for combined quantum mechanical/molecular mechanical calculations: formulation and tests of the analytical derivatives [J].
Amara, P ;
Field, MJ ;
Alhambra, C ;
Gao, JL .
THEORETICAL CHEMISTRY ACCOUNTS, 2000, 104 (05) :336-343
[7]   Importance of barrier shape in enzyme-catalyzed reactions - Vibrationally assisted hydrogen tunneling in tryptophan tryptophylquinone-dependent amine dehydrogenases [J].
Basran, J ;
Patel, S ;
Sutcliffe, MJ ;
Scrutton, NS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (09) :6234-6242
[8]   Enzymatic H-transfer requires vibration-driven extreme tunneling [J].
Basran, J ;
Sutcliffe, MJ ;
Scrutton, NS .
BIOCHEMISTRY, 1999, 38 (10) :3218-3222
[9]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[10]   DEUTERIUM KINETIC ISOTOPE EFFECT AND STOPPED-FLOW KINETIC-STUDIES OF THE QUINOPROTEIN METHYLAMINE DEHYDROGENASE [J].
BROOKS, HB ;
JONES, LH ;
DAVIDSON, VL .
BIOCHEMISTRY, 1993, 32 (10) :2725-2729