Interior numerical approximation of boundary value problems with a distributional data

被引:11
作者
Babuska, I
Nistor, V [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] Univ Texas, Inst Computat Engn & Sci, Austin, TX 78712 USA
关键词
generalized finite element method; boundary value problem; Laplace operator; Sobolev space;
D O I
10.1002/num.20086
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the approximation properties of a harmonic function u is an element of H1-k(Omega), k > 0, on a relatively compact subset A of Omega, using the generalized finite element method (GFEM). If Omega = O, for a smooth, bounded domain O, we obtain that the GFEM-approximation u(s) is an element of = S of u satisfies parallel to u - u(S)parallel to(1)(H)((A)) <= Ch gamma parallel to u parallel to(1-k)(H)((O)), where h is the typical size of the "elements" defining the GFEM-space S and gamma >= 0 is such that the local approximation spaces contain all polynomials of degree k + y. The main technical ingredient is an extension of the classical super-approximation results of Nitsche and Schatz (Applicable Analysis 2 (1972), 161-168; Math Comput 28 (1974), 937-958). In addition to the usual "energy" Sobolev spaces H-1(O), we need also the duals of the Sobolev spaces H-m(C), m is an element of Z(+). (c) 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 22: 79-113, 2006.
引用
收藏
页码:79 / 113
页数:35
相关论文
共 30 条
[1]  
[Anonymous], 2002, MATH THEORY FINITE E, DOI DOI 10.1007/978-1-4757-3658-8
[2]  
BabuOsIca I., 1972, P S U MAR BALT MD 19, P1
[3]  
Babuska I., 2003, Acta Numerica, V12, P1, DOI 10.1017/S0962492902000090
[4]   SPECIAL FINITE-ELEMENT METHODS FOR A CLASS OF 2ND-ORDER ELLIPTIC PROBLEMS WITH ROUGH COEFFICIENTS [J].
BABUSKA, I ;
CALOZ, G ;
OSBORN, JE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (04) :945-981
[5]  
Babuska I, 1997, INT J NUMER METH ENG, V40, P727, DOI 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO
[6]  
2-N
[7]  
BABUSKA I, IN PRESS DIRICHLET P
[8]  
BRAMBLE JH, 1975, MATH COMPUT, V29, P677, DOI 10.1090/S0025-5718-1975-0398120-7
[9]  
Ciarlet P.G., 1991, HDB NUMERICAL ANAL 1, P17, DOI DOI 10.1016/S1570-8659(05)80039-0
[10]  
Evans L. C, 2010, Partial Differential Equations, V19