Averaging over fast gravity waves for geophysical flows with arbitrary potential vorticity

被引:139
作者
Embid, PF [1 ]
Majda, AJ [1 ]
机构
[1] NYU,COURANT INST MATH SCI,NEW YORK,NY 10012
基金
美国国家科学基金会;
关键词
D O I
10.1080/03605309608821200
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Here a mathematically rigorous framework is developed for deriving new reduced simplified dynamical equations for geophysical hows with arbitrary potential vorticity interacting with fast gravity waves. The examples include the rotating Boussinesq and rotating shallow water equations in the quasi-geostrophic limit with vanishing Rossby number. For the spatial periodic case the theory implies that the quasi-geostrophic equations are valid limiting equations in the weak topology for arbitrary initial data. Furthermore, simplified reduced equations are developed for the fashion in which the vortical waves influence the gravity waves through averaging over specific gravity wave/vortical resonances.
引用
收藏
页码:619 / 658
页数:40
相关论文
共 21 条
[1]   VALIDITY OF THE QUASI-GEOSTROPHIC MODEL FOR LARGE-SCALE FLOW IN THE ATMOSPHERE AND OCEAN [J].
BOURGEOIS, AJ ;
BEALE, JT .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1994, 25 (04) :1023-1068
[2]  
CHEMIN JY, 1995, CR ACAD SCI I-MATH, V321, P861
[3]  
EMBID P, UNPUB SIMPLIFIED LIM
[4]  
ERRICO RM, 1981, J ATMOS SCI, V38, P544, DOI 10.1175/1520-0469(1981)038<0544:AAOIBG>2.0.CO
[5]  
2
[6]   WAVE VORTEX DYNAMICS IN ROTATING SHALLOW-WATER [J].
FARGE, M ;
SADOURNY, R .
JOURNAL OF FLUID MECHANICS, 1989, 206 :433-462
[7]  
Gill AE., 1982, ATMOSPHERE OCEAN DYN, P317, DOI 10.1016/S0074-6142(08)60034-0
[8]  
GRENIER E, 1995, OSCILLATORY PERTURBA
[9]   SINGULAR LIMITS OF QUASILINEAR HYPERBOLIC SYSTEMS WITH LARGE PARAMETERS AND THE INCOMPRESSIBLE LIMIT OF COMPRESSIBLE FLUIDS [J].
KLAINERMAN, S ;
MAJDA, A .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1981, 34 (04) :481-524
[10]  
LEITH CE, 1980, J ATMOS SCI, V37, P958, DOI 10.1175/1520-0469(1980)037<0958:NNMIAQ>2.0.CO