Improved diffusion imaging through SNR-enhancing joint reconstruction

被引:79
作者
Haldar, Justin P. [1 ,2 ,3 ]
Wedeen, Van J. [4 ]
Nezamzadeh, Marzieh [5 ,6 ,7 ]
Dai, Guangping [4 ]
Weiner, Michael W. [5 ,6 ,7 ]
Schuff, Norbert [5 ,6 ,7 ]
Liang, Zhi-Pei [2 ]
机构
[1] Univ So Calif, Hughes Aircraft Elect Engn Ctr EEB, Ming Hsieh Dept Elect Engn, Signal & Image Proc Inst, Los Angeles, CA 90089 USA
[2] Univ Illinois, Dept Elect & Comp Engn, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
[3] Univ So Calif, Brain & Creat Inst, Dana & David Dornsife Cognit Neurosci Imaging Ctr, Los Angeles, CA 90089 USA
[4] Harvard Univ, Sch Med, Dept Radiol, MGH Martinos Ctr Biomed Imaging, Charlestown, MA USA
[5] Ctr Imaging Neurodegenerat Dis, San Francisco, CA USA
[6] Vet Affairs Med Ctr, San Francisco, CA 94121 USA
[7] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, San Francisco, CA 94143 USA
基金
美国国家卫生研究院;
关键词
diffusion imaging; denoising; statistical reconstruction; feature preservation; MAGNETIC-RESONANCE IMAGES; RICIAN NOISE; TENSOR MRI; FIBER TRACKING; PARALLEL MRI; DWI DATA; HARDI; REGULARIZATION; ARCHITECTURE; RESTORATION;
D O I
10.1002/mrm.24229
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Quantitative diffusion imaging is a powerful technique for the characterization of complex tissue microarchitecture. However, long acquisition times and limited signal-to-noise ratio represent significant hurdles for many in vivo applications. This article presents a new approach to reduce noise while largely maintaining resolution in diffusion weighted images, using a statistical reconstruction method that takes advantage of the high level of structural correlation observed in typical datasets. Compared to existing denoising methods, the proposed method performs reconstruction directly from the measured complex k-space data, allowing for Gaussian noise modeling and theoretical characterizations of the resolution and signal-to-noise ratio of the reconstructed images. In addition, the proposed method is compatible with many different models of the diffusion signal (e.g., diffusion tensor modeling and q-space modeling). The joint reconstruction method can provide significant improvements in signal-to-noise ratio relative to conventional reconstruction techniques, with a relatively minor corresponding loss in image resolution. Results are shown in the context of diffusion spectrum imaging tractography and diffusion tensor imaging, illustrating the potential of this signal-to-noise ratio-enhancing joint reconstruction approach for a range of different diffusion imaging experiments. Magn Reson Med, 2013. (c) 2012 Wiley Periodicals, Inc.
引用
收藏
页码:277 / 289
页数:13
相关论文
共 70 条
[1]  
Aja-Fernández S, 2008, IEEE T MED IMAGING, V27, P1389, DOI 10.1109/TMI.2008.920609
[2]   Maximum a posteriori estimation of diffusion tensor parameters using a Rician noise model: Why, how and but [J].
Andersson, Jesper L. R. .
NEUROIMAGE, 2008, 42 (04) :1340-1356
[3]   Independent component analysis applied to diffusion tensor MRI [J].
Arfanakis, K ;
Cordes, D ;
Haughton, VM ;
Carew, JD ;
Meyerand, ME .
MAGNETIC RESONANCE IN MEDICINE, 2002, 47 (02) :354-363
[4]   Efficient and robust computation of PDF features from diffusion MR signal [J].
Assemlal, Haz-Edine ;
Tschumperle, David ;
Brun, Luc .
MEDICAL IMAGE ANALYSIS, 2009, 13 (05) :715-729
[5]   Feature-preserving MRI denoising: A Nonparametric empirical Bayes approach [J].
Awate, Suyash P. ;
Whitaker, Ross T. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2007, 26 (09) :1242-1255
[6]   Using Perturbation theory to reduce noise in diffusion tensor fields [J].
Bansal, Ravi ;
Staib, Lawrence H. ;
Xu, Dongrong ;
Laine, Andrew F. ;
Liu, Jun ;
Peterson, Bradley S. .
MEDICAL IMAGE ANALYSIS, 2009, 13 (04) :580-597
[7]  
Basu S, 2006, LECT NOTES COMPUT SC, V4190, P117
[8]   On the unification of line processes, outlier rejection, and robust statistics with applications in early vision [J].
Black, MJ ;
Rangarajan, A .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1996, 19 (01) :57-91
[9]   A generic approach to diffusion filtering of matrix-fields [J].
Burgeth, B. ;
Didas, S. ;
Florack, L. ;
Weickert, J. .
COMPUTING, 2007, 81 (2-3) :179-197
[10]   Partial fourier partially parallel imaging [J].
Bydder, M ;
Robson, MD .
MAGNETIC RESONANCE IN MEDICINE, 2005, 53 (06) :1393-1401