Structure-guided programming of polyketide chain-length determination in chalcone synthase

被引:88
作者
Jez, JM [1 ]
Bowman, ME [1 ]
Noel, JP [1 ]
机构
[1] Salk Inst Biol Studies, Struct Biol Lab, La Jolla, CA 92037 USA
关键词
D O I
10.1021/bi015621z
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Chalcone synthase (CHS) belongs to the family of type III polyketide synthases (PKS) that catalyze formation of structurally diverse polyketides. CHS synthesizes a tetraketide by sequential condensation of three acetyl anions derived from malonyl-CoA decarboxylation to a p-coumaroyl moiety attached to an active site cysteine. Gly256 resides on the surface of the CHS active site that is in direct contact with the polyketide chain derived from malonyl-CoA. Thus, position 256 serves as an ideal. target to probe the link between cavity volume and polyketide chain-length determination in type III PKS. Functional examination of CHS G256A, G256V, G256L, and G256F mutants reveals altered product profiles from that of wild-type CHS. With p-coumaroyl-CoA as a starter molecule, the G256A and G256V mutants produce notably more tetraketide lactone. Further restrictions in cavity volume such as that seen in the G256L and G256F mutants yield increasing levels of the styrylpyrone bis-noryangonin from a triketide intermediate. X-ray crystallographic structures of the CHS G256A, G256V, G256L, and G256F mutants establish that these substitutions reduce the size of the active site cavity without significant alterations in the conformations of the polypeptide backbones. The side chain volume of position 256 influences both the number of condensation reactions during polyketide chain extension and the conformation of the triketide and tetraketide intermediates during the cyclization reaction. These results viewed in conjunction with the natural sequence variation of residue 256 suggest that rapid diversification of product specificity without concomitant loss of substantial catalytic activity in related CHS-like enzymes can occur by site-specific evolution of side chain volume at position 256.
引用
收藏
页码:14829 / 14838
页数:10
相关论文
共 62 条
[1]   Substrate specificity of chalcone synthase: Enzymatic formation of unnatural polyketides from synthetic cinnamoyl-CoA analogues [J].
Abe, I ;
Morita, H ;
Nomura, A ;
Noguchi, H .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (45) :11242-11243
[2]   p-Coumaroyltriacetic acid synthase, a new homologue of chalcone synthase, from Hydrangea macrophylla var. thunbergii [J].
Akiyama, T ;
Shibuya, M ;
Liu, HM ;
Ebizuka, Y .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1999, 263 (03) :834-839
[3]  
[Anonymous], 1999, NAT PROD CHEM
[4]  
Bailey J. A., 1982, PHYTOALEXINS
[5]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[6]   Identification and characterization of gene cluster for synthesis of the polyketide antibiotic 2,4-diacetylphloroglucinol from Pseudomonas fluorescens Q2-87 [J].
Bangera, MG ;
Thomashow, LS .
JOURNAL OF BACTERIOLOGY, 1999, 181 (10) :3155-3163
[7]   CLONING AND CHARACTERIZATION OF A CHALCONE SYNTHASE GENE FROM MUSTARD AND ITS LIGHT-DEPENDENT EXPRESSION [J].
BATSCHAUER, A ;
EHMANN, B ;
SCHAFER, E .
PLANT MOLECULAR BIOLOGY, 1991, 16 (02) :175-185
[8]   Styrylpyrone biosynthesis in Equisetum arvense [J].
Beckert, C ;
Horn, C ;
Schnitzler, JP ;
Lehning, A ;
Heller, W ;
Veit, M .
PHYTOCHEMISTRY, 1997, 44 (02) :275-283
[9]   Benzophenone synthase from cultured cells of Centaurium erythraea [J].
Beerhues, L .
FEBS LETTERS, 1996, 383 (03) :264-266
[10]   Medicinal plants and phytomedicines. Linking plant biochemistry and physiology to human health [J].
Briskin, DP .
PLANT PHYSIOLOGY, 2000, 124 (02) :507-514