Inhibition of gap-junctional intercellular communication by environmentally occurring polycyclic aromatic hydrocarbons

被引:82
作者
Bláha, L
Kapplová, P
Vondrácek, J
Upham, B
Machala, M
机构
[1] Vet Res Inst, CZ-62132 Brno, Czech Republic
[2] Masaryk Univ, Res Ctr Atmospher & Environm Chem & Ecotoxicol, CZ-63700 Brno, Czech Republic
[3] Acad Sci Czech Republ, Inst Biophys, CZ-61265 Brno, Czech Republic
[4] Michigan State Univ, Dept Pediat & Human Dev, E Lansing, MI 48824 USA
[5] Michigan State Univ, Natl Food Safety & Toxicol Ctr, E Lansing, MI 48824 USA
关键词
gap-junctional intercellular communication (GJIC); polycyclic aromatic hydrocarbons (PAHs); nongenotoxic carcinogenicity; tumor promotion; in vitro;
D O I
10.1093/toxsci/65.1.43
中图分类号
R99 [毒物学(毒理学)];
学科分类号
100405 ;
摘要
Polycyclic aromatic hydrocarbons (PAHs) are a broad class of ubiquitous environmental pollutants with known or suspected carcinogenic properties. Tumor promotion is a cell-proliferative step of cancer that requires the removal of cells from growt suppression via the inhibition of gap-junctional intercellular communication (GJIC). Inhibition of GJIC measured with an in vitro WB-F344 rat liver epithelial cell system was used to assess the relative potencies of 13 PAHs suggested by the U.S. Environmental Protection Agency (EPA) as the principal contaminants and 22 other PAHs, most of them identified in environmental samples. Maximal inhibition of GJIC was detected after 30 min of exposure, followed by a recovery in intercellular communication after an additional 30 min of exposure, suggesting a transient character of inhibition. Although muM concentrations of PAHs were required to reach the inhibition level equal to the model tumor promoter phorbol 12-myristate 13-acetate (IC50 = 8 nM), 12 of the PAHs under study were found to be strong inhibitors of GJIC (strongest effects were observed with fluoranthene, picene, 5-methylchrysene and nine additional PAHs). The other nine PAHs, including benzo[a]pyrene, inhibited GJIC only up to 50-75% of the control level. Interestingly, several high molecular weight PAHs with known strong carcinogenic properties possessed only weak (dibenzopyrenes) or no inhibition potency (dibenzofluoranthenes, naphtho[2,3-a]pyrene and benzo[a]peryiene). Based on the IC50 values related to the reference PAH benzo[a]pyrene, we suggested arbitrary values of inhibition equivalency factors (GJIC-IEFs) ranging from 0 (noninhibiting PAHs) to 10.0 (strongest inhibitors), suitable for the purposes of environmental risk assessment.
引用
收藏
页码:43 / 51
页数:9
相关论文
共 54 条
[1]  
[Anonymous], EPA440479029A
[2]   DEFINITIVE RELATIONSHIPS AMONG CHEMICAL-STRUCTURE, CARCINOGENICITY AND MUTAGENICITY FOR 301 CHEMICALS TESTED BY THE UNITED-STATES NTP [J].
ASHBY, J ;
TENNANT, RW .
MUTATION RESEARCH, 1991, 257 (03) :229-306
[3]  
AUTRUP H, 1987, OVERVIEW TUMOUR PROM, V2
[4]   THE SUBSPECIFIC TAXONOMY OF TRYPANOSOMA-BRUCEI [J].
BAKER, JR .
PARASITE, 1995, 2 (01) :3-12
[5]   Ability of polycyclic aromatic hydrocarbons to induce 7-ethoxyresorufin-o-deethylase activity in a trout liver cell line [J].
Bols, NC ;
Schirmer, K ;
Joyce, EM ;
Dixon, DG ;
Greenberg, BM ;
Whyte, JJ .
ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 1999, 44 (01) :118-128
[6]  
Burczynski ME, 1999, CANCER RES, V59, P607
[7]  
Callahan MA., 1979, EPA440479029B, V2
[8]   Evidence of estrogen- and TCDD-like activities in crude and fractionated extracts of PM10 air particulate material using in vitro gene expression assays [J].
Clemons, JH ;
Allan, LM ;
Marvin, CH ;
Wu, Z ;
McCarry, BE ;
Bryant, DW ;
Zacharewski, TR .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1998, 32 (12) :1853-1860
[9]  
Delistraty D., 1997, TOXICOL ENVIRON CHEM, V64, P81, DOI [10.1080/02772249709358542, DOI 10.1080/02772249709358542]
[10]   Mutagenicity of C24H14PAH in human cells expressing CYP1A1 [J].
Durant, JL ;
Lafleur, AL ;
Busby, WF ;
Donhoffner, LL ;
Penman, BW ;
Crespi, CL .
MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS, 1999, 446 (01) :1-14