Expression and functional analysis of G1 to S regulatory components reveals an important role for CDK2 in cell cycle regulation in human embryonic stem cells

被引:143
作者
Neganova, I. [1 ,2 ]
Zhang, X. [1 ,2 ]
Atkinson, S. [1 ,2 ]
Lako, M. [1 ,2 ]
机构
[1] Newcastle Univ, NE Inst Stem Cell Res, Int Ctr Life, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[2] Newcastle Univ, Inst Human Genet, Int Ctr Life, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
基金
英国生物技术与生命科学研究理事会;
关键词
human embryonic stem cell; cell cycle regulation; G1/S transition; CDK2; CYCLIN D1; CYCLIN D2; ES CELLS; DIFFERENTIATION; DERIVATION; ESTABLISHMENT; BLASTOCYSTS; INHIBITION; FEATURES; CULTURE; PHASE; LINES;
D O I
10.1038/onc.2008.358
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
One of the characteristic features of human embryonic stem cells (hESCs) is the competence for self-renewal and pluripotency. To date, little is known about cell cycle regulation in these cells and how the cell cycle machinery influences hESCs properties. A common feature of human, murine and primate ESCs is the presence of a short G1 phase, which has been viewed as a time window during which stem cells are exposed to differentiation signals. We used the hESCs differentiation model and comparisons to human embryonic carcinoma (EC) cells to study the key regulators of G1 to S transition in hESCs. Our studies show that hESCs express all G1-specific CYCLINs (D1, D2, D3 and E) and cyclin-dependent kinases (CDK) (CDK2, CDK4 and CDK6) at variable levels. In contrast to murine ESCs, most of the cell cycle regulators in hESCs show cell cycle-dependent expression, thus revealing important differences in the expression of cell cycle regulatory components between these two embryonic cell types. Knockdown of CDK2 using RNA interference resulted in hESCs arrest at G1 phase of the cell cycle and differentiation to extraembryonic lineages. This suggests an important role for CDK2 in cell cycle regulation in hESCs that are likely to bear significant impacts on the maintenance of their pluripotent phenotype.
引用
收藏
页码:20 / 30
页数:11
相关论文
共 25 条
[1]   Embryonic stem (ES) cells and embryonal carcinoma (EC) cells: Opposite sides of the same coin [J].
Andrews, PW ;
Matin, MM ;
Bahrami, AR ;
Damjanov, I ;
Gokhale, P ;
Draper, JS .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2005, 33 :1526-1530
[2]   The role of PI3K/AKT, MAPK/ERK and NFκβ signalling in the maintenance of human embryonic stem cell pluripotency and viability highlighted by transcriptional profiling and functional analysis [J].
Armstrong, Lyle ;
Hughes, Owen ;
Yung, Sun ;
Hyslop, Louise ;
Stewart, Rebecca ;
Wappler, Ilka ;
Peters, Heiko ;
Walter, Theresia ;
Stojkovic, Petra ;
Evans, Jerome ;
Stojkovic, Miodrag ;
Lako, Majlinda .
HUMAN MOLECULAR GENETICS, 2006, 15 (11) :1894-1913
[3]   Self-renewal of human embryonic stem cells is supported by a shortened G1 cell cycle phase [J].
Becker, Klaus A. ;
Ghule, Prachi N. ;
Therrien, Jaclyn A. ;
Lian, Jane B. ;
Stein, Janet L. ;
Van Wijnen, Andre J. ;
Stein, Gary S. .
JOURNAL OF CELLULAR PHYSIOLOGY, 2006, 209 (03) :883-893
[4]   Establishment of histone gene regulation and cell cycle checkpoint control in human embryonic stem cells [J].
Becker, Klaus A. ;
Stein, Janet L. ;
Lian, Jane B. ;
Van Wijnen, Andre J. ;
Stein, Gary S. .
JOURNAL OF CELLULAR PHYSIOLOGY, 2007, 210 (02) :517-526
[5]  
BLOMEN V, 2007, CELL MOL LIFE SCI, V24, P1789
[6]   Core transcriptional regulatory circuitry in human embryonic stem cells [J].
Boyer, LA ;
Lee, TI ;
Cole, MF ;
Johnstone, SE ;
Levine, SS ;
Zucker, JR ;
Guenther, MG ;
Kumar, RM ;
Murray, HL ;
Jenner, RG ;
Gifford, DK ;
Melton, DA ;
Jaenisch, R ;
Young, RA .
CELL, 2005, 122 (06) :947-956
[7]   Derivation of pluripotent epiblast stem cells from mammalian embryos [J].
Brons, I. Gabrielle M. ;
Smithers, Lucy E. ;
Trotter, Matthew W. B. ;
Rugg-Gunn, Peter ;
Sun, Bowen ;
de Sousa Lopes, Susana M. Chuva ;
Howlett, Sarah K. ;
Clarkson, Amanda ;
Ahrlund-Richter, Lars ;
Pedersen, Roger A. ;
Vallier, Ludovic .
NATURE, 2007, 448 (7150) :191-U7
[8]   An inhibition of cyclin-dependent kinases that lengthens, but does not arrest, neuroepithelial cell cycle induces premature neurogenesis [J].
Calegari, F ;
Huttner, WB .
JOURNAL OF CELL SCIENCE, 2003, 116 (24) :4947-4955
[9]   Selective lengthening of the cell cycle in the neurogenic subpopulation of neural progenitor cells during mouse brain development [J].
Calegari, F ;
Haubensak, W ;
Haffner, C ;
Huttner, WB .
JOURNAL OF NEUROSCIENCE, 2005, 25 (28) :6533-6538
[10]   Characterization and differentiation of human embryonic stem cells [J].
Carpenter, MK ;
Rosler, E ;
Rao, MS .
CLONING AND STEM CELLS, 2003, 5 (01) :79-88