Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition

被引:954
作者
Chhowalla, M [1 ]
Teo, KBK [1 ]
Ducati, C [1 ]
Rupesinghe, NL [1 ]
Amaratunga, GAJ [1 ]
Ferrari, AC [1 ]
Roy, D [1 ]
Robertson, J [1 ]
Milne, WI [1 ]
机构
[1] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
关键词
D O I
10.1063/1.1410322
中图分类号
O59 [应用物理学];
学科分类号
摘要
The growth of vertically aligned carbon nanotubes using a direct current plasma enhanced chemical vapor deposition system is reported. The growth properties are studied as a function of the Ni catalyst layer thickness, bias voltage, deposition temperature, C2H2:NH3 ratio, and pressure. It was found that the diameter, growth rate, and areal density of the nanotubes are controlled by the initial thickness of the catalyst layer. The alignment of the nanotubes depends on the electric field. Our results indicate that the growth occurs by diffusion of carbon through the Ni catalyst particle, which rides on the top of the growing tube. (C) 2001 American Institute of Physics.
引用
收藏
页码:5308 / 5317
页数:10
相关论文
共 42 条
  • [1] Continuous production of aligned carbon nanotubes: a step closer to commercial realization
    Andrews, R
    Jacques, D
    Rao, AM
    Derbyshire, F
    Qian, D
    Fan, X
    Dickey, EC
    Chen, J
    [J]. CHEMICAL PHYSICS LETTERS, 1999, 303 (5-6) : 467 - 474
  • [2] Baker R.T.K., 1978, CHEM PHYS CARBON, V14, P83
  • [3] NUCLEATION AND GROWTH OF CARBON DEPOSITS FROM NICKEL CATALYZED DECOMPOSITION OF ACETYLENE
    BAKER, RTK
    BARBER, MA
    WAITE, RJ
    HARRIS, PS
    FEATES, FS
    [J]. JOURNAL OF CATALYSIS, 1972, 26 (01) : 51 - &
  • [4] FORMATION OF FILAMENTOUS CARBON FROM IRON, COBALT AND CHROMIUM CATALYZED DECOMPOSITION OF ACETYLENE
    BAKER, RTK
    HARRIS, PS
    THOMAS, RB
    WAITE, RJ
    [J]. JOURNAL OF CATALYSIS, 1973, 30 (01) : 86 - 95
  • [5] Electrochemical studies of single-wall carbon nanotubes in aqueous solutions
    Barisci, JN
    Wallace, GG
    Baughman, RH
    [J]. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2000, 488 (02): : 92 - 98
  • [6] Carbon nanotube actuators
    Baughman, RH
    Cui, CX
    Zakhidov, AA
    Iqbal, Z
    Barisci, JN
    Spinks, GM
    Wallace, GG
    Mazzoldi, A
    De Rossi, D
    Rinzler, AG
    Jaschinski, O
    Roth, S
    Kertesz, M
    [J]. SCIENCE, 1999, 284 (5418) : 1340 - 1344
  • [7] Field emission from carbon nanotubes:: perspectives for applications and clues to the emission mechanism
    Bonard, JM
    Salvetat, JP
    Stöckli, T
    Forró, L
    Châtelain, A
    [J]. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1999, 69 (03): : 245 - 254
  • [8] Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition
    Bower, C
    Zhou, O
    Zhu, W
    Werder, DJ
    Jin, SH
    [J]. APPLIED PHYSICS LETTERS, 2000, 77 (17) : 2767 - 2769
  • [9] Plasma-induced alignment of carbon nanotubes
    Bower, C
    Zhu, W
    Jin, SH
    Zhou, O
    [J]. APPLIED PHYSICS LETTERS, 2000, 77 (06) : 830 - 832
  • [10] Cassell AM, 1999, J PHYS CHEM B, V103, P6484, DOI 10.1021/jp990957sCCC:$18.00