Quantum interference in plasmonic circuits

被引:157
作者
Heeres, Reinier W. [1 ]
Kouwenhoven, Leo P. [1 ]
Zwiller, Valery [1 ]
机构
[1] Delft Univ Technol, Kavli Inst Nanosci, NL-2600 GA Delft, Netherlands
基金
欧洲研究理事会;
关键词
WAVE-GUIDES; ELECTRICAL DETECTION; OPTICAL PLASMONS; TRANSMISSION; POLARITONS; EMISSION; PHOTONS;
D O I
10.1038/nnano.2013.150
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Surface plasmon polaritons (plasmons) are a combination of light and a collective oscillation of the free electron plasma at metal/dielectric interfaces(1). This interaction allows subwavelength confinement of light beyond the diffraction limit inherent to dielectric structures(2). As a result, the intensity of the electromagnetic field is enhanced, with the possibility to increase the strength of the optical interactions between waveguides, light sources(3-6) and detectors(7,8). Plasmons maintain non-classical photon statistics(9,10) and preserve entanglement upon transmission through thin, patterned metallic films(11,12) or weakly confining waveguides(13). For quantum applications(3,14), it is essential that plasmons behave as indistinguishable quantum particles. Here we report on a quantum interference experiment in a nanoscale plasmonic circuit consisting of an on-chip plasmon beamsplitter with integrated superconducting single-photon detectors(15) to allow efficient single plasmon detection(16). We demonstrate a quantum-mechanical interaction between pairs of indistinguishable surface plasmons by observing Hong-Ou-Mandel (HOM) interference(17), a hallmark non-classical interference effect that is the basis of linear optics-based quantum computation(18). Our work shows that it is feasible to shrink quantum optical experiments to the nanoscale and offers a promising route towards subwavelength quantum optical networks.
引用
收藏
页码:719 / 722
页数:4
相关论文
共 28 条
[1]   Generation of single optical plasmons in metallic nanowires coupled to quantum dots [J].
Akimov, A. V. ;
Mukherjee, A. ;
Yu, C. L. ;
Chang, D. E. ;
Zibrov, A. S. ;
Hemmer, P. R. ;
Park, H. ;
Lukin, M. D. .
NATURE, 2007, 450 (7168) :402-406
[2]   Plasmon-assisted transmission of entangled photons [J].
Altewischer, E ;
van Exter, MP ;
Woerdman, JP .
NATURE, 2002, 418 (6895) :304-306
[3]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[4]   Quantum optics of lossy beam splitters [J].
Barnett, SM ;
Jeffers, J ;
Gatti, A ;
Loudon, R .
PHYSICAL REVIEW A, 1998, 57 (03) :2134-2145
[5]   Channel plasmon subwavelength waveguide components including interferometers and ring resonators [J].
Bozhevolnyi, SI ;
Volkov, VS ;
Devaux, E ;
Laluet, JY ;
Ebbesen, TW .
NATURE, 2006, 440 (7083) :508-511
[6]   OBSERVATION OF SIMULTANEITY IN PARAMETRIC PRODUCTION OF OPTICAL PHOTON PAIRS [J].
BURNHAM, DC ;
WEINBERG, DL .
PHYSICAL REVIEW LETTERS, 1970, 25 (02) :84-&
[7]   Quantum optics with surface plasmons [J].
Chang, D. E. ;
Sorensen, A. S. ;
Hemmer, P. R. ;
Lukin, M. D. .
PHYSICAL REVIEW LETTERS, 2006, 97 (05)
[8]   A single-photon transistor using nanoscale surface plasmons [J].
Chang, Darrick E. ;
Sorensen, Anders S. ;
Demler, Eugene A. ;
Lukin, Mikhail D. .
NATURE PHYSICS, 2007, 3 (11) :807-812
[9]   Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons [J].
Charbonneau, R ;
Lahoud, N .
OPTICS EXPRESS, 2005, 13 (03) :977-984
[10]   Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna [J].
Curto, Alberto G. ;
Volpe, Giorgio ;
Taminiau, Tim H. ;
Kreuzer, Mark P. ;
Quidant, Romain ;
van Hulst, Niek F. .
SCIENCE, 2010, 329 (5994) :930-933